ﻻ يوجد ملخص باللغة العربية
The frozen domain effective fragment molecular orbital method is extended to allow for the treatment of a single fragment at the MP2 level of theory. The approach is applied to the conversion of chorismate to prephenate by chorismate mutase, where the substrate is treated at the MP2 level of theory while the rest of the system is treated at the RHF level. MP2 geometry optimization is found to lower the barrier by up to 3.5 kcal/mol compared to RHF optimzations and ONIOM energy refinement and leads to a smoother convergence with respect to the basis set for the reaction profile. For double zeta basis sets the increase in CPU time relative to RHF is roughly a factor of two.
The computational investigation of photochemical processes often entails the calculation of excited state geometries, energies, and energy gradients. The nuclear-electronic orbital (NEO) approach treats specified nuclei, typically protons, quantum me
Perdew-Zunger self-interaction correction (PZ-SIC) offers a route to remove self-interaction errors on an orbital-by-orbital basis. A recent formulation of PZ-SIC by Pederson, Ruzsinszky and Perdew proposes restricting the unitary transformation to l
Recent synthetic studies on the organic molecules tetracene and pentacene have found certain dimers and oligomers to exhibit an intense absorption in the visible region of the spectrum which is not present in the monomer or many previously-studied di
Using the effective rotational Hamiltonian method, we have conducted an analysis of the D218O ground and the first excited vibration state rotational energy levels. The analysis was based on the effective Hamiltonians represented in several forms: th
Density functional theory (DFT) and beyond-DFT methods are often used in combination with photoelectron spectroscopy to obtain physical insights into the electronic structure of molecules and solids. The Kohn-Sham eigenvalues are not electron removal