ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetically Confined Interstellar Hot Plasma in the Nuclear Bulge of our Galaxy

123   0   0.0 ( 0 )
 نشر من قبل Shogo Nishiyama
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The origin of the Galactic center diffuse X-ray emission (GCDX) is still under intense investigation. In particular, the interpretation of the hot (kT ~ 7 keV) component of the GCDX, characterised by the strong Fe 6.7 keV line emission, has been contentious. If the hot component originates from a truly diffuse interstellar plasma, not a collection of unresolved point sources, such plasma cannot be gravitationally bound, and its regeneration would require a huge amount of energy. Here we show that the spatial distribution of the GCDX does NOT correlate with the number density distribution of an old stellar population traced by near-infrared light, strongly suggesting a significant contribution of the diffuse interstellar plasma. Contributions of the old stellar population to the GCDX are implied to be about 50 % and 20 % in the Nuclear stellar disk and Nuclear star cluster, respectively. For the Nuclear stellar disk, a scale height of 0.32 +- 0.02 deg is obtained for the first time from the stellar number density profiles. We also show the results of the extended near-infrared polarimetric observations in the central 3 deg * 2 deg region of our Galaxy, and confirm that the GCDX region is permeated by a large scale, toroidal magnetic field as previously claimed. Together with observed magnetic field strengths close to energy equipartition, the hot plasma could be magnetically confined, reducing the amount of energy required to sustain it.



قيم البحث

اقرأ أيضاً

The aim of our work was to study the spatial structure of inhomogeneities of interstellar plasma in the directions of five pulsars: B0823+26, B0834+06, B1237+25, B1929+10, and B2016+28. Observations of these pulsars were made with RadioAstron space-g round radio interferometer at 324 MHz. We measured the angular size of the scattering disks to be in range between 0.63 and 3.2 mas. We determined the position of scattering screens on the line of sight. Independent estimates of the distances to the screens were made from the curvature of parabolic arcs revealed in the secondary spectra of four pulsars. The model of uniform distribution of inhomogeneities on the line of sight is not suitable. According to the results, we came to the conclusion that scattering is mainly produced by compact plasma layers and the uniform model of inhomogeneties distribution on the line of sight in not applicable.
103 - S. Pellegrini 2019
A hot plasma is the dominant phase of the interstellar medium of early-type galaxies. Its origin can reside in stellar mass losses, residual gas from the formation epoch, and accretion from outside of the galaxies. Its evolution is linked to the dyna mical structure of the host galaxy, to the supernova and AGN feedback, and to (late-epoch) star formation, in a way that has yet to be fully understood. Important clues about the origin and evolution of the hot gas come from the abundances of heavy metals, that have been studied with increasing detail with XMM-Newton and Chandra. We present recent high resolution hydrodynamical simulations of the hot gas evolution that include the above processes, and where several chemical species, originating in AGB stars and supernovae of type Ia and II, have also been considered. The high resolution, of few parsecs in the central galactic region, allows us to track the metal enrichment, transportation and dilution throughout the galaxy. The comparison of model results with observed abundances reveals a good agreement for the region enriched by the AGN wind, but also discrepancies for the diffuse hot gas; the latter indicate the need for a revision of standard assumptions, and/or the importance of neglected effects as those due to the dust, and/or residual uncertainties in deriving abundances from the X-ray spectra.
209 - S. Funk , J.A. Hinton , G. Hermann 2009
The survey of the inner Galaxy with H.E.S.S. was remarkably successful in detecting a wide range of new very-high-energy gamma-ray sources. New TeV gamma-ray emitting source classes were established, although several of the sources remain unidentifie d, and progress has been made in understanding particle acceleration in astrophysical sources. In this work, we constructed a model of a population of such very-high-energy gamma-ray emitters and normalised the flux and size distribution of this population model to the H.E.S.S.-discovered sources. Extrapolating that population of objects to lower flux levels we investigate what a future array of imaging atmospheric telescopes (IACTs) such as AGIS or CTA might detect in a survey of the Inner Galaxy with an order of magnitude improvement in sensitivity. The sheer number of sources detected together with the improved resolving power will likely result in a huge improvement in our understanding of the populations of galactic gamma-ray sources. A deep survey of the inner Milky Way would also support studies of the interstellar diffuse gamma-ray emission in regions of high cosmic-ray density. In the final section of this paper we investigate the science potential for the Galactic Centre region for studying energy-dependent diffusion with such a future array.
374 - Asif ud-Doula 2015
A subset (~ 10%) of massive stars present strong, globally ordered (mostly dipolar) magnetic fields. The trapping and channeling of their stellar winds in closed magnetic loops leads to magnetically confined wind shocks (MCWS), with pre-shock flow sp eeds that are some fraction of the wind terminal speed. These shocks generate hot plasma, a source of X-rays. In the last decade, several developments took place, notably the determination of the hot plasma properties for a large sample of objects using XMM-Newton and Chandra, as well as fully self-consistent MHD modelling and the identification of shock retreat effects in weak winds. Despite a few exceptions, the combination of magnetic confinement, shock retreat and rotation effects seems to be able to account for X-ray emission in massive OB stars. Here we review these new observational and theoretical aspects of this X-ray emission and envisage some perspectives for the next generation of X-ray observatories.
We present XMM-Newton/EPIC observations of six merging galaxy clusters and study the distributions of their temperature, iron (Fe) abundance and pseudo-entropy along the merging axis. For the first time, we focus simultaneously, and in a comprehensiv e way, on the chemical and thermodynamic properties of the freshly collided intracluster medium (ICM). The Fe distribution of these clusters along the merging axis is found to be in good agreement with the azimuthally-averaged Fe abundance profile in typical non-cool-core clusters out to $r_{500}$. In addition to showing a moderate central abundance peak, though less pronounced than in relaxed systems, the Fe abundance flattens at large radii towards $sim$0.2-0.3 $Z_odot$. Although this shallow metal distribution is in line with the idea that disturbed, non-cool-core clusters originate from the merging of relaxed, cool-core clusters, we find that in some cases, remnants of metal-rich and low entropy cool cores can persist after major mergers. While we obtain a mild anti-correlation between the Fe abundance and the pseudo-entropy in the (lower entropy, $K$ = 200-500 keV cm$^2$) inner regions, no clear correlation is found at (higher entropy, $K$ = 500-2300 keV cm$^2$) outer radii. The apparent spatial abundance uniformity that we find at large radii is difficult to explain through an efficient mixing of freshly injected metals, particularly in systems for which the time since the merger is short. Instead, our results provide important additional evidence in favour of the early enrichment scenario - in which the bulk of the metals are released outside galaxies at $z$ > 2-3 - and extend it from cool-core and (moderate) non-cool-core clusters to a few of the most disturbed merging clusters as well. These results constitute a first step towards a deeper understanding of the chemical history of merging clusters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا