ترغب بنشر مسار تعليمي؟ اضغط هنا

Traveling Waves in 2D Hexagonal Granular Crystal Lattices

189   0   0.0 ( 0 )
 نشر من قبل Christopher Chong Dr.
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe the dynamic response of a two-dimensional hexagonal packing of uncompressed stainless steel spheres excited by localized impulsive loadings. After the initial impact strikes the system, a characteristic wave structure emerges and continuously decays as it propagates through the lattice. Using an extension of the binary collision approximation (BCA) for one-dimensional chains, we predict its decay rate, which compares well with numerical simulations and experimental data. While the hexagonal lattice does not support constant speed traveling waves, we provide scaling relations that characterize the power law decay of the wave velocity. Lastly, we discuss the effects of weak disorder on the directional amplitude decay rates.



قيم البحث

اقرأ أيضاً

Linear and nonlinear mechanisms for conical wave propagation in two-dimensional lattices are explored in the realm of phononic crystals. As a prototypical example, a statically compressed granular lattice of spherical particles arranged in a hexagona l packing configuration is analyzed. Upon identifying the dispersion relation of the underlying linear problem, the resulting diffraction properties are considered. Analysis both via a heuristic argument for the linear propagation of a wavepacket, as well as via asymptotic analysis leading to the derivation of a Dirac system suggests the occurrence of conical diffraction. This analysis is valid for strong precompression i.e., near the linear regime. For weak precompression, conical wave propagation is still possible, but the resulting expanding circular wave front is of a non-oscillatory nature, resulting from the complex interplay between the discreteness, nonlinearity and geometry of the packing. The transition between these two types of propagation is explored.
The method of simplest equation is applied for analysis of a class of lattices described by differential-difference equations that admit traveling-wave solutions constructed on the basis of the solution of the Riccati equation. We denote such lattice s as Riccati lattices. We search for Riccati lattices within two classes of lattices: generalized Lotka - Volterra lattices and generalized Holling lattices. We show that from the class of generalized Lotka - Volterra lattices only the Wadati lattice belongs to the class of Riccati lattices. Opposite to this many lattices from the Holling class are Riccati lattices. We construct exact traveling wave solutions on the basis of the solution of Riccati equation for three members of the class of generalized Holing lattices.
We propose a simple algebraic method for generating classes of traveling wave solutions for a variety of partial differential equations of current interest in nonlinear science. This procedure applies equally well to equations which may or may not be integrable. We illustrate the method with two distinct classes of models, one with solutions including compactons in a class of models inspired by the Rosenau-Hyman, Rosenau-Pikovsky and Rosenau-Hyman-Staley equations, and the other with solutions including peakons in a system which generalizes the Camassa-Holm, Degasperis-Procesi and Dullin-Gotwald-Holm equations. In both cases, we obtain new classes of solutions not studied before.
We study the existence and stability of multisite discrete breathers in two prototypical non-square Klein-Gordon lattices, namely a honeycomb and a hexagonal one. In the honeycomb case we consider six-site configurations and find that for soft potent ial and positive coupling the out-of-phase breather configuration and the charge-two vortex breather are linearly stable, while the in-phase and charge-one vortex states are unstable. In the hexagonal lattice, we first consider three-site configurations. In the case of soft potential and positive coupling, the in-phase configuration is unstable and the charge-one vortex is linearly stable. The out-of-phase configuration here is found to always be linearly unstable. We then turn to six-site configurations in the hexagonal lattice. The stability results in this case are the same as in the six-site configurations in the honeycomb lattice. For all configurations in both lattices, the stability results are reversed in the setting of either hard potential or negative coupling. The study is complemented by numerical simulations which are in very good agreement with the theoretical predictions. Since neither the form of the on-site potential nor the sign of the coupling parameter involved have been prescribed, this description can accommodate inverse-dispersive systems (e.g., supporting backward waves) such as transverse dust-lattice oscillations in dusty plasma (Debye) crystals or analogous modes in molecular chains.
We consider a prototypical dynamical lattice model, namely, the discrete nonlinear Schroedinger equation on nonsquare lattice geometries. We present a systematic classification of the solutions that arise in principal six-lattice-site and three-latti ce-site contours in the form of both discrete multipole solitons and discrete vortices. Additionally to identifying the possible states, we analytically track their linear stability both qualitatively and quantitatively. We find that among the six-site configurations, the hexapole of alternating phases, as well as the vortex of topological charge S=2 have intervals of stability; among three-site states, only the vortex of topological charge S=1 may be stable in the case of focusing nonlinearity. These conclusions are confirmed both for hexagonal and for honeycomb lattices by means of detailed numerical bifurcation analysis of the stationary states from the anticontinuum limit, and by direct simulations to monitor the dynamical instabilities, when the latter arise. The dynamics reveal a wealth of nonlinear behavior resulting not only in single-site solitary wave forms, but also in robust multisite breathing structures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا