ﻻ يوجد ملخص باللغة العربية
We describe in this paper a connection between bifix codes, symbolic dynamical systems and free groups. This is in the spirit of the connection established previously for the symbolic systems corresponding to Sturmian words. We introduce a class of sets of factors of an infinite word with linear factor complexity containing Sturmian sets and regular interval exchange sets, namemly the class of tree sets. We prove as a main result that for a uniformly recurrent tree set $F$, a finite bifix code $X$ on the alphabet $A$ is $F$-maximal of $F$-degree $d$ if and only if it is the basis of a subgroup of index $d$ of the free group on $A$.
A set of n points in the plane which are not all collinear defines at least n distinct lines. Chen and Chvatal conjectured in 2008 that a similar result can be achieved in the broader context of finite metric spaces. This conjecture remains open even
We prove the Lefschetz property for a certain class of finite-dimensional Gorenstein algebras associated to matroids. Our result implies the Sperner property of the vector space lattice. More generally, it is shown that the modular geometric lattice
Despite providing similar functionality, multiple network services may require the use of different interfaces to access the functionality, and this problem will only get worse with the widespread deployment of ubiquitous computing environments. One
A Group Labeled Graph is a pair $(G,Lambda)$ where $G$ is an oriented graph and $Lambda$ is a mapping from the arcs of $G$ to elements of a group. A (not necessarily directed) cycle $C$ is called non-null if for any cyclic ordering of the arcs in $C$
The hypercontractive inequality is a fundamental result in analysis, with many applications throughout discrete mathematics, theoretical computer science, combinatorics and more. So far, variants of this inequality have been proved mainly for product