ترغب بنشر مسار تعليمي؟ اضغط هنا

Late-Time Dust Emission from the Type IIn Supernova 1995N

245   0   0.0 ( 0 )
 نشر من قبل Schuyler D. van Dyk
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Type IIn supernovae (SNe IIn) have been found to be associated with significant amounts of dust. These core-collapse events are generally expected to be the final stage in the evolution of highly-massive stars, either while in an extreme red supergiant phase or during a luminous blue variable phase. Both evolutionary scenarios involve substantial pre-supernova mass loss. I have analyzed the SN IIn 1995N in MCG -02-38-017 (Arp 261), for which mid-infrared archival data obtained with the Spitzer Space Telescope in 2009 (~14.7 yr after explosion) and with the Wide-field Infrared Survey Explorer (WISE) in 2010 (~15.6--16.0 yr after explosion) reveal a luminous (~2e7 L_sun) source detected from 3.4 to 24 micron. These observations probe the circumstellar material, set up by pre-SN mass loss, around the progenitor star and indicate the presence of ~0.05--0.12 M_sun of pre-existing, cool dust at ~240 K. This is at least a factor ~10 lower than the dust mass required to be produced from SNe at high redshift, but the case of SN 1995N lends further evidence that highly massive stars could themselves be important sources of dust.



قيم البحث

اقرأ أيضاً

192 - C. L. Gerardy 2002
Near-Infrared (NIR) observations are presented for five Type IIn supernovae (SN 1995N, SN 1997ab, SN 1998S, SN 1999Z, and SN 1999el) that exhibit strong infrared excesses at late times (t >= 100 d). H- and K-band emission from these objects is domina ted by a continuum that rises toward longer wavelengths. The data are interpreted as thermal emission from dust, probably situated in a pre-existing circumstellar nebula. The IR luminosities implied by single temperature blackbody fits are quite large,> 10^(41 - 42) erg s^-1, and the emission evolves slowly, lasting for years after maximum light. For SN 1995N, the integrated energy release via IR dust emission was 0.5 -- 1 * 10^50 erg. A number of dust heating scenarios are considered, the most likely being an infrared echo poweredby X-ray and UV emissions from the shock interaction with a dense circumstellar medium.
We present radio observations of the optically bright Type IIn supernova SN 1995N. We observed the SN at radio wavelengths with the Very Large Array (VLA) for 11 years. We also observed it at low radio frequencies with the Giant Metrewave Radio Teles cope (GMRT) at various epochs within $6.5-10$ years since explosion. Although there are indications of an early optically thick phase, most of the data are in the optically thin regime so it is difficult to distinguish between synchrotron self absorption (SSA) and free-free absorption (FFA) mechanisms. However, the information from other wavelengths indicates that the FFA is the dominant absorption process. Model fits of radio emission with the FFA give reasonable physical parameters. Making use of X-ray and optical observations, we derive the physical conditions of the shocked ejecta and the shocked CSM.
iPTF15dtg is a Type Ic supernova (SN) showing a broad light curve around maximum light, consistent with massive ejecta if we assume a radioactive-powering scenario. We study the late-time light curve of iPTF15dtg, which turned out to be extraordinari ly luminous for a stripped-envelope (SE) SN. We compare the observed light curves to those of other SE SNe and also with models for the $^{56}$Co decay. We analyze and compare the spectra to nebular spectra of other SE SNe. We build a bolometric light curve and fit it with different models, including powering by radioactivity, magnetar powering, as well as a combination of the two. Between 150 d and 750 d past explosion, iPTF15dtgs luminosity declined by merely two magnitudes instead of the six magnitudes expected from $^{56}$Co decay. This is the first spectroscopically-regular SE SN showing this behavior. The model with both radioactivity and magnetar powering provides the best fit to the light curve and appears to be the more realistic powering mechanism. An alternative mechanism might be CSM interaction. However, the spectra of iPTF15dtg are very similar to those of other SE SNe, and do not show signs of strong CSM interaction. iPTF15dtg is the first spectroscopically-regular SE SN whose light curve displays such clear signs of a magnetar contributing to the powering of the late time light curve. Given this result, the mass of the ejecta needs to be revised to a lower value, and therefore the progenitor mass could be significantly lower than the previously estimated $>$35 $M_{odot}$.
We searched through roughly 12 years of archival survey data acquired by the Katzman Automatic Imaging Telescope (KAIT) as part of the Lick Observatory Supernova Search (LOSS) in order to detect or place limits on possible progenitor outbursts of Typ e IIn supernovae (SNe~IIn). The KAIT database contains multiple pre-SN images for 5 SNe~IIn (plus one ambiguous case of a SN IIn/imposter) within 50 Mpc. No progenitor outbursts are found using the false discovery rate (FDR) statistical method in any of our targets. Instead, we derive limiting magnitudes (LMs) at the locations of the SNe. These limiting magnitudes (typically reaching $m_R approx 19.5,mathrm{mag}$) are compared to outbursts of SN 2009ip and $eta$ Car, plus additional simulated outbursts. We find that the data for SN 1999el and SN 2003dv are of sufficient quality to rule out events $sim40$ days before the main peak caused by initially faint SNe from blue supergiant (BSG) precursor stars, as in the cases of SN 2009ip and SN 2010mc. These SNe~IIn may thus have arisen from red supergiant progenitors, or they may have had a more rapid onset of circumstellar matter interaction. We also estimate the probability of detecting at least one outburst in our dataset to be $gtrsim60%$ for each type of the example outbursts, so the lack of any detections suggests that such outbursts are either typically less luminous (intrinsically or owing to dust) than $sim -13,mathrm{mag}$, or not very common among SNe~IIn within a few years prior to explosion.
127 - K. Maeda , T. Nozawa , D.K. Sahu 2013
Supernovae (SNe) have been proposed to be the main production sites of dust grains in the Universe. Our knowledge on their importance to dust production is, however, limited by observationally poor constraints on the nature and amount of dust particl es produced by individual SNe. In this paper, we present a spectrum covering optical through near-Infrared (NIR) light of the luminous Type IIn supernova (SN IIn) 2010jl around one and half years after the explosion. This unique data set reveals multiple signatures of newly formed dust particles. The NIR portion of the spectrum provides a rare example where thermal emission from newly formed hot dust grains is clearly detected. We determine the main population of the dust species to be carbon grains at a temperature of ~1,350 - 1,450K at this epoch. The mass of the dust grains is derived to be ~(7.5 - 8.5) x 10^{-4} Msun. Hydrogen emission lines show wavelength-dependent absorption, which provides a good estimate on the typical size of the newly formed dust grains (~0.1 micron, and most likely <~0.01 micron). We attribute the dust grains to have been formed in a dense cooling shell as a result of a strong SN-circumstellar media (CSM) interaction. The dust grains occupy ~10% of the emitting volume, suggesting an inhomogeneous, clumpy structure. The average CSM density is required to be >~3 x 10^{7} cm^{-3}, corresponding to a mass loss rate of >~0.02 Msun yr^{-1} (for a mass loss wind velocity of ~100 km s^{-1}). This strongly supports a scenario that SN 2010jl and probably other luminous SNe IIn are powered by strong interactions within very dense CSM, perhaps created by Luminous Blue Variable (LBV)-like eruptions within the last century before the explosion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا