ترغب بنشر مسار تعليمي؟ اضغط هنا

The Blazar Emission Environment: Insight from Soft X-ray Absorption

110   0   0.0 ( 0 )
 نشر من قبل Amy Furniss
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Collecting experimental insight into the relativistic particle populations and emission mechanisms at work within TeV-emitting blazar jets, which are spatially unresolvable in most bands and have strong beaming factors, is a daunting task. New observational information has the potential to lead to major strides in understanding the acceleration site parameters. Detection of molecular carbon monoxide (CO) in TeV emitting blazars, however, implies the existence of intrinsic gas, a connection often found in photo-dissociated region models and numerical simulations. The existence of intrinsic gas within a blazar could provide a target photon field for Compton up-scattering of photons to TeV energies by relativistic particles. We investigate the possible existence of intrinsic gas within the three TeV emitting blazars RGB J0710+591, W Comae and 1ES 1959+650 which have measurements or upper limits on molecular CO line luminosity using an independent technique which is based on the spectral analysis of soft X-rays. Evidence for X-ray absorption by additional gas beyond that measured within the Milky Way is searched for in Swift X-ray Telescope (XRT) data between 0.3 and 10 keV. Without complementary information from another measurement, additional absorption could be misinterpreted as an intrinsically curved X-ray spectrum since both models can frequently fit the soft X-ray data. After breaking this degeneracy, we do not find evidence for intrinsically curved spectra for any of the three blazars. Moreover, no evidence for intrinsic gas is evident for RGB J0710+591 and W Comae, while the 1ES 1959+650 XRT data support the existence of intrinsic gas with a column density of $sim1times10^{21}$cm$^{-2}$.



قيم البحث

اقرأ أيضاً

Blazars are the most extreme subclass of active galactic nuclei with relativistic jets emerging from a super-massive black hole and forming a small angle with respect to our line of sight. Blazars are also known to be related to flaring activity as t hey exhibit large flux variations over a wide range of frequency and on multiple timescales, ranging from a few minutes to several months. The detection of a high-energy neutrino from the flaring blazar TXS 0506+056 and the subsequent discovery of a neutrino excess from the same direction have naturally strengthened the hypothesis that blazars are cosmic neutrino sources. While neutrino production during gamma-ray flares has been widely discussed, the neutrino yield of X-ray flares has received less attention. Motivated by a theoretical scenario where high energy neutrinos are produced by energetic protons interacting with their own X-ray synchrotron radiation, we make neutrino predictions over a sample of a sample of X-ray blazars. This sample consists of all blazars observed with the X-ray Telescope (XRT) on board Swift more than 50 times from November 2004 to November 2020. The statistical identification of a flaring state is done using the Bayesian Block algorithm to the 1 keV XRT light curves of frequently observed blazars. We categorize flaring states into classes based on their variation from the time-average value of the data points. During each flaring state, we compute the expected muon plus anti-muon neutrino events as well as the total signal for each source using the point-source effective area of Icecube for different operational seasons. We find that the median of the total neutrino number (in logarithm) from flares with duration $<30$ d is $mathcal{N}^{(rm tot)}_{ u_{mu}+bar{ u}_{mu}} sim 0.02$.
237 - Jiren Liu , Shude Mao 2015
We present an analysis of the diffuse soft X-ray emission from the nuclear region of M51 combining both XMM-Newton RGS and Chandra data. Most of the RGS spectrum of M51 can be fitted with a thermal model with a temperature of $sim0.5$ keV except for the OVII triplet, which is forbidden-line dominated. The Fe L-shell lines peak around the southern cloud, where the OVIII and NVII Lya lines also peak. In contrast, the peak of the OVII forbidden line is about 10$$ offset from that of the other lines, indicating that it is from a spatially distinct component. The spatial distribution of the OVII triplet mapped by the Chandra data shows that most of the OVII triplet flux is located at faint regions near edges, instead of the southern cloud where other lines peak. This distribution of the OVII triplet is inconsistent with the photoionization model. Other mechanisms that could produce the anomalous OVII triplet, including a recombining plasma and charge exchange X-ray emission, are discussed.
102 - M. Tanga , P. Schady , A. Gatto 2016
Two-thirds of long duration gamma-ray bursts (GRBs) show soft X-ray absorption in excess of the Milky Way. The column densities of metals inferred from UV and optical spectra differ from those derived from soft X-ray spectra, at times by an order of magnitude, with the latter being higher. The origin of the soft X-ray absorption excess observed in GRB X-ray afterglow spectra remains a heavily debated issue, which has resulted in numerous investigations on the effect of hot material both internal and external to the GRB host galaxy on our X-ray afterglow observations. Nevertheless, all models proposed so far have either only been able to account for a subset of our observations (i.e. at z > 2), or they have required fairly extreme conditions to be present within the absorbing material. In this paper, we investigate the absorption of the GRB afterglow by a collisionally ionised and turbulent interstellar medium (ISM). We find that a dense (3 per cubic centimeters) collisionally ionised ISM could produce UV/optical and soft X-ray absorbing column densities that differ by a factor of 10, however the UV/optical and soft X-ray absorbing column densities for such sightlines and are 2-3 orders of magnitude lower in comparison to the GRB afterglow spectra. For those GRBs with a larger soft X-ray excess of up to an order of magnitude, the contribution in absorption from a turbulent ISM as considered here would ease the required conditions of additional absorbing components, such as the GRB circumburst medium and intergalactic medium.
High resolution soft X-ray spectroscopy of the prototype accretion disk wind quasar, PDS 456, is presented. Here, the XMM-Newton RGS spectra are analyzed from the large 2013-2014 XMM-Newton campaign, consisting of 5 observations of approximately 100 ks in length. During the last observation (hereafter OBS. E), the quasar is at a minimum flux level and broad absorption line profiles are revealed in the soft X-ray band, with typical velocity widths of $sigma_{rm v}sim 10,000$ km s$^{-1}$. During a period of higher flux in the 3rd and 4th observations (OBS. C and D, respectively), a very broad absorption trough is also present above 1 keV. From fitting the absorption lines with models of photoionized absorption spectra, the inferred outflow velocities lie in the range $sim 0.1-0.2c$. The absorption lines likely originate from He and H-like neon and L-shell iron at these energies. Comparison with earlier archival data of PDS 456 also reveals similar absorption structure near 1 keV in a 40 ks observation in 2001, and generally the absorption lines appear most apparent when the spectrum is more absorbed overall. The presence of the soft X-ray broad absorption lines is also independently confirmed from an analysis of the XMM-Newton EPIC spectra below 2 keV. We suggest that the soft X-ray absorption profiles could be associated with a lower ionization and possibly clumpy phase of the accretion disk wind, where the latter is known to be present in this quasar from its well studied iron K absorption profile and where the wind velocity reaches a typical value of 0.3$c$.
We report NuSTAR observations of a sample of six X-ray weak broad absorption line (BAL) quasars. These targets, at z=0.148-1.223, are among the optically brightest and most luminous BAL quasars known at z<1.3. However, their rest-frame 2 keV luminosi ties are 14 to >330 times weaker than expected for typical quasars. Our results from a pilot NuSTAR study of two low-redshift BAL quasars, a Chandra stacking analysis of a sample of high-redshift BAL quasars, and a NuSTAR spectral analysis of the local BAL quasar Mrk 231 have already suggested the existence of intrinsically X-ray weak BAL quasars, i.e., quasars not emitting X-rays at the level expected from their optical/UV emission. The aim of the current program is to extend the search for such extraordinary objects. Three of the six new targets are weakly detected by NuSTAR with <45 counts in the 3-24 keV band, and the other three are not detected. The hard X-ray (8-24 keV) weakness observed by NuSTAR requires Compton-thick absorption if these objects have nominal underlying X-ray emission. However, a soft stacked effective photon index ({Gamma}~1.8) for this sample disfavors Compton-thick absorption in general. The uniform hard X-ray weakness observed by NuSTAR for this and the pilot samples selected with <10 keV weakness also suggests that the X-ray weakness is intrinsic in at least some of the targets. We conclude that the NuSTAR observations have likely discovered a significant population (>33%) of intrinsically X-ray weak objects among the BAL quasars with significantly weak <10 keV emission. We suggest that intrinsically X-ray weak quasars might be preferentially observed as BAL quasars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا