ﻻ يوجد ملخص باللغة العربية
Radar (SAR) images often exhibit profound appearance variations due to a variety of factors including clutter noise produced by the coherent nature of the illumination. Ultrasound images and infrared images have similar cluttered appearance, that make 1 dimensional structures, as edges and object boundaries difficult to locate. Structure information is usually extracted in two steps: first, building and edge strength mask classifying pixels as edge points by hypothesis testing, and secondly estimating from that mask, pixel wide connected edges. With constant false alarm rate (CFAR) edge strength detectors for speckle clutter, the image needs to be scanned by a sliding window composed of several differently oriented splitting sub-windows. The accuracy of edge location for these ratio detectors depends strongly on the orientation of the sub-windows. In this work we propose to transform the edge strength detection problem into a binary segmentation problem in the undecimated wavelet domain, solvable using parallel 1d Hidden Markov Models. For general dependency models, exact estimation of the state map becomes computationally complex, but in our model, exact MAP is feasible. The effectiveness of our approach is demonstrated on simulated noisy real-life natural images with available ground truth, while the strength of our output edge map is measured with Pratts, Baddeley an Kappa proficiency measures. Finally, analysis and experiments on three different types of SAR images, with different polarizations, resolutions and textures, illustrate that the proposed method can detect structure on SAR images effectively, providing a very good start point for active contour methods.
Ground-penetrating radar on planes and satellites now makes it practical to collect 3D observations of the subsurface structure of the polar ice sheets, providing crucial data for understanding and tracking global climate change. But converting these
Digital Surface Model generation from satellite imagery is a difficult task that has been largely overlooked by the deep learning community. Stereo reconstruction techniques developed for terrestrial systems including self driving cars do not transla
In this paper we propose two efficient techniques which allow one to compute the price of American basket options. In particular, we consider a basket of assets that follow a multi-dimensional Black-Scholes dynamics. The proposed techniques, called G
We present a joint copula-based model for insurance claims and sizes. It uses bivariate copulae to accommodate for the dependence between these quantities. We derive the general distribution of the policy loss without the restrictive assumption of in
As a potential window on transitions out of the ergodic, many-body-delocalized phase, we study the dephasing of weakly disordered, quasi-one-dimensional fermion systems due to a diffusive, non-Markovian noise bath. Such a bath is self-generated by th