ترغب بنشر مسار تعليمي؟ اضغط هنا

Large-Area Aiming Synthesis of WSe2 Monolayers

186   0   0.0 ( 0 )
 نشر من قبل Lain-Jong Li
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The monolayer transition metal dichalcogenides have recently attracted much attention owing to their potential in valleytronics, flexible and low-power electronics and optoelectronic devices. Recent reports have demonstrated the growth of large-size 2-dimensional MoS2 layers by the sulfurization of molybdenum oxides. However, the growth of transition metal selenide monolayer has still been a challenge. Here we report that the introduction of hydrogen in the reaction chamber helps to activate the selenization of WO3, where large-size WSe2 monolayer flakes or thin films can be successfully grown.



قيم البحث

اقرأ أيضاً

Monolayer WS2 offers great promise for use in optical devices due to its direct bandgap and high photoluminescence intensity. While fundamental investigations can be performed on exfoliated material, large-area and high quality materials are essentia l for implementation of technological applications. In this work, we synthesize monolayer WS2 under various controlled conditions and characterize the films using photoluminescence, Raman and x-ray photoelectron spectroscopies. We demonstrate that the introduction of hydrogen to the argon carrier gas dramatically improves the optical quality and increases the growth area of WS2, resulting in films exhibiting mm2 coverage. The addition of hydrogen more effectively reduces the WO3 precursor and protects against oxidative etching of the synthesized monolayers. The stoichiometric WS2 monolayers synthesized using Ar+H2 carrier gas exhibit superior optical characteristics, with photoluminescence emission full width half maximum values below 40 meV and emission intensities nearly an order of magnitude higher than films synthesized in a pure Ar environment.
The synthesis of transition metal dichalcogenides (TMDs) has been a primary focus for 2D nanomaterial research over the last 10 years, however, only a small fraction of this research has been concentrated on transition metal ditellurides. In particul ar, nanoscale platinum ditelluride (PtTe2) has rarely been investigated, despite its potential applications in catalysis, photonics and spintronics. Of the reports published, the majority examine mechanically-exfoliated flakes from chemical vapor transport (CVT) grown crystals. While this production method is ideal for fundamental studies, it is very resource intensive therefore rendering this process unsuitable for large scale applications. In this report, the synthesis of thin films of PtTe2 through the reaction of solid-phase precursor films is described. This offers a production method for large-area, thickness-controlled PtTe2, suitable for a range of applications. These polycrystalline PtTe2 films were grown at temperatures as low as 450 degC, significantly below the typical temperatures used in the CVT synthesis methods. To investigate their potential applicability, these films were examined as electrocatalysts for the hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR). The films showed promising catalytic behavior, however, the PtTe2 was found to undergo chemical transformation to a substoichiometric chalcogenide compound under ORR conditions. This study shows while PtTe2 is stable and highly useful for HER, this property does not apply to ORR, which undergoes a fundamentally different mechanism. This study broadens our knowledge of the electrocatalysis of TMDs.
155 - Bo Wang , Yipu Xia , Junqiu Zhang 2020
Mirror twin boundary (MTB) brings unique 1D physics and properties into two-dimensional transition metal dichalcogenides (TMDCs), but they were rarely observed in non-Mo-based TMDCs. Herein, by post-growth Nb doping, high density 4|4E-W and 4|4P-Se M TBs were introduced into molecular beam epitaxy (MBE) grown WSe2 monolayers. Of them, 4|4E-W MTB with a novel structure was discovered experimentally for the first time, while 4|4P-Se MTBs present a random permutations of W and Nb, forming a 1D alloy system. Comparison between the doped and non-doped WSe2 confirmed that Nb dopants are essential for MTB formation. Furthermore, quantitative statistics reveal the areal density of MTBs is directly proportional to the concentration of Nb dopants. To unravel the injection pathway of Nb dopants, first-principles calculations about a set of formation energies for excess Nb atoms with different configurations were conducted, based on which a model explaining the origin of MTBs introduced by excess metal was built. We conclude that the formation of MTBs is mainly driven by the collective evolution of excess Nb atoms introduced into the lattice of host WSe2 crystal and subsequent displacement of metal atoms (W or Nb). This study provides a novel way to tailor the MTBs in 2D TMDC materials via proper metal doping and presents a new opportunities for exploring the intriguing properties.
Rhombohedral-stacked few-layer graphene (FLG) has been receiving an ever-increasing attention owing to its peculiar electronic properties that could lead to enticing phenomena such as superconductivity and magnetic ordering. Up to now, experimental s tudies on such material have been mainly limited by the difficulty in isolating it in thickness exceeding 3 atomic layers with device-compatible size. In this work, rhombohedral graphene with thickness up to 9 layers and areas up to ~50 micrometers square is grown via chemical vapor deposition (CVD) on suspended Cu foils and transferred onto target substrates via etch-free delamination. The domains of rhombohedral FLG are identified by Raman spectroscopy and are found to alternate with domains of Bernal-stacked FLG within the same crystal in a stripe-like configuration. A combined analysis of micro-Raman mapping, atomic force microscopy and optical microscopy indicates that the formation of rhombohedral-stacked FLG is strongly correlated to the copper substrate morphology. Cu step bunching results in bending of FLG and interlayer displacement along preferential crystallographic orientations, as determined experimentally by electron microscopy, thus inducing the stripe-like domains. The growth and transfer of rhombohedral FLG with the reported thickness and size shall facilitate the observation of predicted unconventional physics and ultimately add to its technological relevance.
Great achievements have been made in alloying of two-dimensional (2D) semiconducting transition metal dichalcogenides (TMDs), which can allow tunable band gaps for practical applications in optoelectronic devices. However, telluride-based TMDs alloys were less studied due to the difficulties of sample synthesis. Here, in this work we report the large-area synthesis of 2D MoTexSe2-x alloy films with controllable Te composition by a modified alkali metal halides assisted chemical vapor deposition method. The as-prepared films have millimeter-scale transverse size. Raman spectra experiments combining calculated Raman spectra and vibrational images obtained by density functional theory (DFT) confirmed the 2H-phase of the MoTexSe2-x alloys. The A1g mode of MoSe2 shows a significant downshift accompanied by asymmetric broadening to lower wavenumber with increasing value of x, while E12g mode seems unchanged, which were well explained by a phonon confinement model. Our work provides a simple method to synthesize large-scale 2H phase Te-based 2D TMDs alloys for their further applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا