ﻻ يوجد ملخص باللغة العربية
According to the fossil-field hypothesis magnetic fields are remnants of the previous stages of evolution. However, population synthesis calculations are unable to reproduce the magnetic white dwarf (MWD) sample without binary interaction or inclusion of a population of progenitor with unobservable small-scale fields. One necessary ingredient in population synthesis is the initial-to-final-mass relation (IFMR) which describes the mass-loss processes during the stellar evolution. When white dwarfs are members of open clusters, their evolutionary histories can be assessed through the use of cluster properties. In this work, we assess the cluster membership by correlating the proper-motion of MWDs with the cluster proper-motion and by analyzing the candidates spectroscopically with our magnetic model spectra in order to estimate the effective temperature and radii. We identified SDSS J085523.87+164059.0 to be a proper-motion member of Praesepe. We also included the data of the formerly identified cluster members NGC 6819-8, WD 0836+201 and estimated the mass, cooling age and the progenitor masses of the three probable MWD members of open clusters. According to our analysis, the newly identified cluster member SDSS J085523.87+164059.0 is an ultra-massive MWD of mass 1.12 $pm$ 0.11 Msolar. We increase the sample of MWDs with known progenitor masses to ten, with the rest of the data coming from the common proper motion binaries. Our investigations show that, when effects of the magnetic fields are included in the diagnostics, the estimated properties of these cluster MWDs do not show evidence for deviations from the IFMR. Furthermore, we estimate the precision of the magnetic diagnostics which would be necessary to determine quantitatively whether magnetism has any effect on the mass-loss.
The old, solar metallicity open cluster Messier 67 has long been considered a lynchpin in the study and understanding of the structure and evolution of solar-type stars. The same is arguably true for stellar remnants - the white dwarf population of M
In this paper we review the current status of research on the observational and theoretical characteristics of isolated and binary magnetic white dwarfs (MWDs). Magnetic fields of isolated MWDs are observed to lie in the range 10^3-10^9G. While the
We have carried out a search for massive white dwarfs (WDs) in the direction of young open star clusters using the Gaia DR2 database. The aim of this survey was to provide robust data for new and previously known high-mass WDs regarding cluster membe
We present the first radiation magnetohydrodynamics simulations of the atmosphere of white dwarf stars. We demonstrate that convective energy transfer is seriously impeded by magnetic fields when the plasma-beta parameter, the thermal to magnetic pre
The origin of magnetic fields in isolated and binary white dwarfs has been investigated in a series of recent papers. One proposal is that magnetic fields are generated through an alpha-omega dynamo during common envelope evolution. Here we present p