ﻻ يوجد ملخص باللغة العربية
Nonlinear PID control systems for a quadrotor UAV are proposed to follow an attitude tracking command and a position tracking command. The control systems are developed directly on the special Euclidean group to avoid singularities of minimal attitude representations or ambiguity of quaternions. A new form of integral control terms is proposed to guarantee almost global asymptotic stability when there exist uncertainties in the quadrotor dynamics. A rigorous mathematical proof is given. Numerical example illustrating a complex maneuver, and a preliminary experimental result are provided.
This paper presents nonlinear tracking control systems for a quadrotor unmanned aerial vehicle under the influence of uncertainties. Assuming that there exist unstructured disturbances in the translational dynamics and the attitude dynamics, a geomet
We derived a coordinate-free form of equations of motion for a complete model of a quadrotor UAV with a payload which is connected via a flexible cable according to Lagrangian mechanics on a manifold. The flexible cable is modeled as a system of seri
Equations of motion and dynamics of a quadrotor transporting a load with a flexible cable modeled as a chain pendulum is obtained using Euler-Lagrange equations by taking variations on manifolds. An arbitrary number of links considered in a series mo
This paper addresses the problem of designing a trajectory tracking control law for a quadrotor UAV, subsequent to complete failure of a single rotor. The control design problem considers the reduced state space which excludes the angular velocity an
The widespread adoption of nonlinear Receding Horizon Control (RHC) strategies by industry has led to more than 30 years of intense research efforts to provide stability guarantees for these methods. However, current theoretical guarantees require th