ترغب بنشر مسار تعليمي؟ اضغط هنا

Long-range spin current driven by superconducting phase difference in a Josephson junction with double layer ferromagnets

352   0   0.0 ( 0 )
 نشر من قبل Shin-ichi Hikino
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We theoretically study spin current through ferromagnet (F) in a Josephson junction composed of s-wave superconductors and two layers of ferromagnets. Using quasiclassical theory, we show that the long-range spin current can be driven by the superconducting phase difference without voltage drop. The origin of this spin current is due to spin-triplet Cooper pairs (STCs) formed by electrons of equal-spin, which are induced by proximity effect inside the F. We find that the spin current carried by the STCs exhibits long-range propagation in the F even where the Josephson charge current is practically zero. We also show that this spin current persists over a remarkably longer distance than the ordinary spin current carried by spin polarized conduction electrons in the F. Our results thus indicate the promising potential of Josephson junctions based on multilayer ferromagnets for spintronics applications with long-range propagating spin current.



قيم البحث

اقرأ أيضاً

We study the thermodynamic properties of a superconductor/normal metal/superconductor Josephson junction {in the short limit}. Owing to the proximity effect, such a junction constitutes a thermodynamic system where {phase difference}, supercurrent, t emperature and entropy are thermodynamical variables connected by equations of state. These allow conceiving quasi-static processes that we characterize in terms of heat and work exchanged. Finally, we combine such processes to construct a Josephson-based Otto and Stirling cycles. We study the related performance in both engine and refrigerator operating mode.
108 - Shin-ichi Hikino 2018
We theoretically investigate the magnetization inside a normal metal containing the Rashba spin-orbit interaction (RSOI) induced by the proximity effect in an s-wave superconductor/normal metal/ferromagnetic metal/s-wave superconductor (S/N/F/S) Jose phson junction. By solving the linearized Usadel equation taking account of the RSOI,we find that the direction of the magnetization induced by the proximity effect in N can be reversed by tuning the RSOI.Moreover, we also find that the direction of the magnetization inside N can be reversed by changing the superconducting phase difference, i.e., Josephson phase. From these results, it is expected that the dependence of the magnetization on the RSOI and Josephson phase can be applied to superconducting spintronics.
We theoretically study the Josephson effect in a superconductor/normal metal/superconductor ({it S}/{it N}/{it S}) Josephson junction composed of $s$-wave {it S}s with {it N} which is sandwiched by two ferromagnetic insulators ({it F}s), forming a sp in valve, in the vertical direction of the junction. We show that the 0-$pi$ transition of the Josephson critical current occurs with increasing the thickness of {it N} along the junction. This transition is due to the magnetic proximity effect (MPE) which induces ferromagnetic magnetization in the {it N}. Moreover, we find that, even for fixed thickness of {it N}, the proposed Josephson junction with the spin valve can be switched from $pi$ to 0 states and vice versa by varying the magnetization configuration (parallel or antiparallel) of two {it F}s. We also examine the effect of spin-orbit scattering on the Josephson critical current and argue that the 0-$pi$ transition found here can be experimentally observed within the current nanofabrication techniques, thus indicating a promising potential of this junction as a 0-$pi$ switching device operated reversibly with varying the magnetic configuration in the spin valve by, e.g., applying an external magnetic field. %with the magnetization configuration in the spin valve. Our results not only provide possible applications in superconducting electronics but also suggest the importance of a fundamental concept of MPE in nanostructures of multilayer {it N}/{it F} systems.
A superconducting quantum interference device (SQUID) comprising 0- and $pi$-Josephson junctions (JJs), called $pi$-SQUID, is studied by the resistively shunted junction model. The $pi$-SQUID shows half-integer Shapiro-steps (SS) under microwave irra diation at the voltage $V$ = $(hbar/2e)Omega (n/2)$, with angular frequency $Omega$ and half-integer $n$/2 in addition to integer $n$. We show that the $pi$-SQUID can be a $pi$-qubit with spontaneous loop currents by which the half-integer SS are induced. Making the 0- and $pi$-JJs equivalent is a key for the half-integer SS and realizing the $pi$-qubit.
The order parameter of superconducting pairs penetrating an inhomogeneous magnetic material can acquire a long range triplet component (LRTC) with non-zero spin projection. This state has been predicted and generated recently in proximity systems and Josephson junctions. We show using an analytically derived domain wall of an exchange spring how the LRTC emerges and can be tuned with the twisting of the magnetization. We also introduce a new kind of Josephson current reversal, the triplet $0-pi$ transition, that can be observed in one and the same system either by tuning the domain wall or by varying temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا