ﻻ يوجد ملخص باللغة العربية
Symanzik effective actions, conjectured to describe lattice artifacts, are determined for a class of lattice regularizations of the non-linear O(N) sigma model in two dimensions in the leading order of the 1/N-expansion. The class of actions considered includes also ones which do not have the usual classical limit and are not (so far) treatable in the framework of ordinary perturbation theory. The effective actions obtained are shown to reproduce previously computed lattice artifacts of the step scaling functions defined in finite volume, giving further confidence in Symanziks theory of lattice artifacts.
We present the result of our computation of the lowest lying meson masses for SU(N) gauge theory in the large $N$ limit (with $N_f/Nlongrightarrow 0$). The final values are given in units of the square root of the string tension, and with errors whic
We study the two-dimensional Yang--Mills theory with four supercharges in the large-$N$ limit. By using thermal boundary conditions, we analyze the internal energy and the distribution of scalars. We compare their behavior to the maximally supersymme
The vector meson mass is computed as a function of quark mass in the large N limit of QCD. We use continuum reduction and directly compute the vector meson propagator in momentum space. Quark momentum is inserted using the quenched momentum prescription.
We consider the large N limit of four dimensional SU(N) Yang-Mills field coupled to adjoint fermions on a single site lattice. We use perturbative techniques to show that the Z^4_N center-symmetries are broken with naive fermions but they are not bro
In a scalar theory which we use as a simplified model for the Higgs sector, we adopt the semiclassical formalism of Son for computations of $n$-particle production cross-sections in the high-multiplicity $nto infty$ weak-coupling $lambda to 0$ regime