ﻻ يوجد ملخص باللغة العربية
We examine the axial U(1) symmetry near and above the finite temperature phase transition in two-flavor QCD using lattice QCD simulations. Although the axial U(1) symmetry is always violated by quantization, (i.e.) the chiral anomaly, the correlation functions may manifest effective restoration of the symmetry in the high temperature phase. We explicitly study this possibility by calculating the meson correlators as well as the Dirac operator spectral density near the critical point. Our numerical simulations are performed on a $16^3times 8$ lattice with two flavors of dynamical quarks represented by the overlap fermion formalism. Chiral symmetry and its violation due to the axial anomaly is manifestly realized with this formulation, which is a prerequisite for the study of the effective restoration of the axial U(1) symmetry. In order to avoid discontinuity in the gauge configuration space, which occurs for the exactly chiral lattice fermions, the simulation is confined in a fixed topological sector. It induces finite volume effect, which is well described by a formula based on the Fourier transform from the $theta$-vacua. We confirm this formula at finite temperature by calculating the topological susceptibility in the quenched theory. Our two flavor simulations show degeneracy of the meson correlators and a gap in the Dirac operator spectral density, which implies that the axial U(1) symmetry is effectively restored in the chirally symmetric phase.
We investigate the axial U(1) anomaly of two-flavor QCD at temperatures 190--330 MeV. In order to preserve precise chiral symmetry on the lattice, we employ the Mobius domain-wall fermion action as well as overlap fermion action implemented with a st
We investigate the high-temperature phase of QCD using lattice QCD simulations with $N_f = 2$ dynamical Mobius domain-wall fermions. On generated configurations, we study the axial $U(1)$ symmetry, overlap-Dirac spectra, screening masses from mesonic
We investigate the axial $U(1)_A$ symmetry breaking above the critical temperature in two-flavor lattice QCD. The ensembles are generated with dynamical Mobius domain-wall or reweighted overlap fermions. The $U(1)_A$ susceptibility is extracted from
We study analytically and numerically the three-dimensional U(1) lattice gauge theory at finite temperature in the dual formulation. For an appropriate disorder operator, we obtain the renormalization group equations describing the critical behavior
Recently, Grabowska and Kaplan suggested a non-perturbative formulation of a chiral gauge theory, which consists of the conventional domain-wall fermion and a gauge field that evolves by the gradient flow from one domain wall to the other. In this pa