ﻻ يوجد ملخص باللغة العربية
In this paper, we introduce and investigate emph{bisemialgebras}andemph{ Hopf semialgebras} over commutative semirings. We generalize to the semialgebraic context several results on bialgebras and Hopf algebras over rings including the main reconstruction theorems and the emph{Fundamental Theorem of Hopf Algebras}. We also provide a notion of emph{quantum monoids} as Hopf semialgebras which are neither commutative nor cocommutative; this extends the Hopf algebraic notion of a quantum group. The generalization to the semialgebraic context is neither trivial nor straightforward due to the non-additive nature of the base category of Abelian monoids which is also neither Puppe-exact nor homological and does not necessarily have enough injectives.
We investigate a method of construction of central deformations of associative algebras, which we call centrification. We prove some general results in the case of Hopf algebras and provide several examples.
We study actions of semisimple Hopf algebras H on Weyl algebras A over a field of characteristic zero. We show that the action of H on A must factor through a group algebra; in other words, if H acts inner faithfully on A, then H is cocommutative. Th
The Calabi-Yau property of cocommutative Hopf algebras is discussed by using the homological integral, a recently introduced tool for studying infinite dimensional AS-Gorenstein Hopf algebras. It is shown that the skew-group algebra of a universal en
We prove that any action of a finite dimensional Hopf algebra H on a Weyl algebra A over an algebraically closed field of characteristic zero factors through a group action. In other words, Weyl algebras do not admit genuine finite quantum symmetries
In this work we study the deformations of a Hopf algebra $H$ by partial actions of $H$ on its base field $Bbbk$, via partial smash product algebras. We introduce the concept of a $lambda$-Hopf algebra as a Hopf algebra obtained as a partial smash p