ترغب بنشر مسار تعليمي؟ اضغط هنا

Universality of the momentum band density of periodic networks

129   0   0.0 ( 0 )
 نشر من قبل Ram Band
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The momentum spectrum of a periodic network (quantum graph) has a band-gap structure. We investigate the relative density of the bands or, equivalently, the probability that a randomly chosen momentum belongs to the spectrum of the periodic network. We show that this probability exhibits universal properties. More precisely, the probability to be in the spectrum does not depend on the edge lengths (as long as they are generic) and is also invariant within some classes of graph topologies.



قيم البحث

اقرأ أيضاً

Analytical solutions of the Schrodinger equation are obtained for some diatomic molecular potentials with any angular momentum. The energy eigenvalues and wave functions are calculated exactly. The asymptotic form of the equation is also considered. Algebraic method is used in the calculations.
145 - Par Kurlberg , Igor Wigman 2014
We prove that the Nazarov-Sodin constant, which up to a natural scaling gives the leading order growth for the expected number of nodal components of a random Gaussian field, genuinely depends on the field. We then infer the same for arithmetic random waves, i.e. random toral Laplace eigenfunctions.
We investigate the level density for several ensembles of positive random matrices of a Wishart--like structure, $W=XX^{dagger}$, where $X$ stands for a nonhermitian random matrix. In particular, making use of the Cauchy transform, we study free mult iplicative powers of the Marchenko-Pastur (MP) distribution, ${rm MP}^{boxtimes s}$, which for an integer $s$ yield Fuss-Catalan distributions corresponding to a product of $s$ independent square random matrices, $X=X_1cdots X_s$. New formulae for the level densities are derived for $s=3$ and $s=1/3$. Moreover, the level density corresponding to the generalized Bures distribution, given by the free convolution of arcsine and MP distributions is obtained. We also explain the reason of such a curious convolution. The technique proposed here allows for the derivation of the level densities for several other cases.
318 - Cesare Tronci 2018
This paper presents the momentum map structures which emerge in the dynamics of mixed states. Both quantum and classical mechanics are shown to possess analogous momentum map pairs. In the quantum setting, the right leg of the pair identifies the Ber ry curvature, while its left leg is shown to lead to more general realizations of the density operator which have recently appeared in quantum molecular dynamics. Finally, the paper shows how alternative representations of both the density matrix and the classical density are equivariant momentum maps generating new Clebsch representations for both quantum and classical dynamics. Uhlmanns density matrix and Koopman-von Neumann wavefunctions are shown to be special cases of this construction.
An eigenfunction of the Laplacian on a metric (quantum) graph has an excess number of zeros due to the graphs non-trivial topology. This number, called the nodal surplus, is an integer between 0 and the graphs first Betti number $beta$. We study the distribution of the nodal surplus values in the countably infinite set of the graphs eigenfunctions. We conjecture that this distribution converges to Gaussian for any sequence of graphs of growing $beta$. We prove this conjecture for several special graph sequences and test it numerically for a variety of well-known graph families. Accurate computation of the distribution is made possible by a formula expressing the nodal surplus distribution as an integral over a high-dimensional torus.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا