ترغب بنشر مسار تعليمي؟ اضغط هنا

Equivariant cycles and cancellation for motivic cohomology

173   0   0.0 ( 0 )
 نشر من قبل Jeremiah Heller
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a Bredon motivic cohomology theory for smooth schemes defined over a field and equipped with an action by a finite group. These cohomology groups are defined for finite dimensional representations as the hypercohomology of complexes of equivariant correspondences in the equivariant Nisnevich topology. We generalize the theory of presheaves with transfers to the equivariant setting and prove a Cancellation Theorem.



قيم البحث

اقرأ أيضاً

97 - Marc Hoyois 2015
We introduce and study the homotopy theory of motivic spaces and spectra parametrized by quotient stacks [X/G], where G is a linearly reductive linear algebraic group. We extend to this equivariant setting the main foundational results of motivic hom otopy theory: the (unstable) purity and gluing theorems of Morel and Voevodsky and the (stable) ambidexterity theorem of Ayoub. Our proof of the latter is different than Ayoubs and is of interest even when G is trivial. Using these results, we construct a formalism of six operations for equivariant motivic spectra, and we deduce that any cohomology theory for G-schemes that is represented by an absolute motivic spectrum satisfies descent for the cdh topology.
143 - Gottfried Barthel 1999
We investigate the equivariant intersection cohomology of a toric variety. Considering the defining fan of the variety as a finite topological space with the subfans being the open sets (that corresponds to the toric topology given by the invariant o pen subsets), equivariant intersection cohomology provides a sheaf (of graded modules over a sheaf of graded rings) on that fan space. We prove that this sheaf is a minimal extension sheaf, i.e., that it satisfies three relatively simple axioms which are known to characterize such a sheaf up to isomorphism. In the verification of the second of these axioms, a key role is played by equivariantly formal toric varieties, where equivariant and usual (non-equivariant) intersection cohomology determine each other by Kunneth type formulae. Minimal extension sheaves can be constructed in a purely formal way and thus also exist for non-rational fans. As a consequence, we can extend the notion of an equivariantly formal fan even to this general setup. In this way, it will be possible to introduce virtual intersection cohomology for equivariantly formal non-rational fans.
188 - Jeremiah Heller 2013
We show that Shipleys detection functor for symmetric spectra generalizes to motivic symmetric spectra. As an application, we construct motivic strict ring spectra representing morphic cohomology, semi-topological $K$-theory, and semi-topological cob ordism for complex varieties. As a further application to semi-topological cobordism, we show that it is related to semi-topological $K$-theory via a Conner-Floyd type isomorphism and that after inverting a lift of the Friedlander-Mazur $s$-element in morphic cohomology, semi-topological cobordism becomes isomorphic to periodic complex cobordism.
This paper provides an introduction to equivariant cohomology and homology using the approach of Goresky, Kottwitz, and MacPherson. When a group G acts suitably on a variety X, the equivariant cohomology of X can be computed using the combinatorial d ata of a skeleton of G-orbits on X. We give both a geometric definition and the traditional definition of equivariant cohomology. We include a discussion of the moment map and an algorithm for finding a set of generators for the equivariant cohomology of X. Many examples and explicit calculations are provided.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا