ﻻ يوجد ملخص باللغة العربية
The peak time of optical afterglow may be used as a proxy to constrain the Lorentz factor Gamma of the gamma-ray burst (GRB) ejecta. We revisit this method by including bursts with optical observations that started when the afterglow flux was already decaying; these bursts can provide useful lower limits on Gamma. Combining all analyzed bursts in our sample, we find that the previously reported correlation between Gamma and the burst luminosity L_gamma does not hold. However, the data clearly shows a lower bound Gamma_min which increases with L_gamma. We suggest an explanation for this feature: explosions with large jet luminosities and Gamma < Gamma_min suffer strong adiabatic cooling before their radiation is released at the photosphere; they produce weak bursts, barely detectable with present instruments. To test this explanation we examine the effect of adiabatic cooling on the GRB location in the L_gamma - Gamma plane using a Monte Carlo simulation of the GRB population. Our results predict detectable on-axis orphan afterglows. We also derive upper limits on the density of the ambient medium that decelerates the explosion ejecta. We find that the density in many cases is smaller than expected for stellar winds from normal Wolf-Rayet progenitors. The burst progenitors may be peculiar massive stars with weaker winds or there might exist a mechanism that reduces the stellar wind a few years before the explosion.
Knowledge of the bulk Lorentz factor $Gamma_{0}$ of GRBs allows us to compute their comoving frame properties shedding light on their physics. Upon collisions with the circumburst matter, the fireball of a GRB starts to decelerate, producing a peak o
The early X-ray afterglow of gamma-ray bursts revealed by Swift carried many surprises. We focus in this paper on the plateau phase whose origin remains highly debated. We confront several newly discovered correlations between prompt and afterglow qu
We present results of the prompt, early, and afterglow optical observations of five gamma-ray bursts, GRBs 100901A, 100902A, 100905A, 100906A, and 101020A, made with the Mobile Astronomical System of TElescope-Robots in Russia (MASTER-II net), the 1.
We report early optical linear polarization observations of two gamma-ray bursts made with the MASTER robotic telescope network. We found the minimum polar- ization for GRB150301B to be 8% at the beginning of the initial stage, whereas we detected no
About 15% of Gamma Ray Bursts have precursors, i.e. emission episodes preceding the main event, whose spectral and temporal properties are similar to the main emission. We propose that precursors have their own fireball, producing afterglow emission