ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Cauchy problem for backward stochastic partial differential equations in H{o}lder spaces

170   0   0.0 ( 0 )
 نشر من قبل Shanjian Tang
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper is concerned with solution in H{o}lder spaces of the Cauchy problem for linear and semi-linear backward stochastic partial differential equations (BSPDEs) of super-parabolic type. The pair of unknown variables are viewed as deterministic spatial functionals which take values in Banach spaces of random (vector) processes. We define suitable functional H{o}lder spaces for them and give some inequalities among these H{o}lder norms. The existence, uniqueness as well as the regularity of solutions are proved for BSPDEs, which contain new assertions even on deterministic PDEs.



قيم البحث

اقرأ أيضاً

157 - Jinniao Qiu , Wenning Wei 2013
This paper is concerned with the quasi-linear reflected backward stochastic partial differential equation (RBSPDE for short). Basing on the theory of backward stochastic partial differential equation and the parabolic capacity and potential, we first associate the RBSPDE to a variational problem, and via the penalization method, we prove the existence and uniqueness of the solution for linear RBSPDE with Lapalacian leading coefficients. With the continuity approach, we further obtain the well-posedness of general quasi-linear RBSPDEs. Related results, including It^o formulas for backward stochastic partial differential equations with random measures, the comparison principle for solutions of RBSPDEs and the connections with reflected backward stochastic differential equations and optimal stopping problems, are addressed as well.
By using the technique of the Zvonkins transformation and the classical Khasminkiis time discretization method, we prove the averaging principle for slow-fast stochastic partial differential equations with bounded and H{o}lder continuous drift coeffi cients. An example is also provided to explain our result.
In this work we study the long time behavior of nonlinear stochastic functional-differential equations in Hilbert spaces. In particular, we start with establishing the existence and uniqueness of mild solutions. We proceed with deriving a priory unif orm in time bounds for the solutions in the appropriate Hilbert spaces. These bounds enable us to establish the existence of invariant measure based on Krylov-Bogoliubov theorem on the tightness of the family of measures. Finally, under certain assumptions on nonlinearities, we establish the uniqueness of invariant measures.
294 - W.Wang , A.J. Roberts 2009
Averaging is an important method to extract effective macroscopic dynamics from complex systems with slow modes and fast modes. This article derives an averaged equation for a class of stochastic partial differential equations without any Lipschitz a ssumption on the slow modes. The rate of convergence in probability is obtained as a byproduct. Importantly, the deviation between the original equation and the averaged equation is also studied. A martingale approach proves that the deviation is described by a Gaussian process. This gives an approximation to errors of $mathcal{O}(e)$ instead of $mathcal{O}(sqrt{e})$ attained in previous averaging.
140 - Jun Sekine , Akihiro Tanaka 2020
The X-valuation adjustment (XVA) problem, which is a recent topic in mathematical finance, is considered and analyzed. First, the basic properties of backward stochastic differential equations (BSDEs) with a random horizon in a progressively enlarged filtration are reviewed. Next, the pricing/hedging problem for defaultable over-the-counter (OTC) derivative securities is described using such BSDEs. An explicit sufficient condition is given to ensure the non-existence of an arbitrage opportunity for both the seller and buyer of the derivative securities. Furthermore, an explicit pricing formula is presented in which XVA is interpreted as approximated correction terms of the theoretical fair price.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا