ﻻ يوجد ملخص باللغة العربية
We apply a functional renormalisation group to systems of four bosonic atoms close to the unitary limit. We work with a local effective action that includes a dynamical trimer field and we use this field to eliminate structures that do not correspond to the Faddeev-Yakubovsky equations. In the physical limit, we find three four-body bound states below the shallowest three-body state. The values of the scattering lengths at which two of these states become bound are in good agreement with exact solutions of the four-body equations and experimental observations. The third state is extremely shallow. During the evolution we find an infinite number of four-body states based on each three-body state which follow a double-exponential pattern in the running scale. None of the four-body states shows any evidence of dependence on a four-body parameter.
We use the functional renormalisation group to study the spectrum of three- and four-body states in bosonic systems around the unitary limit. Our effective action includes all energy-independent contact interactions in the four-atom sector and we int
We present the analysis of the $N$-boson spectrum computed using a soft two-body potential the strength of which has been varied in order to cover an extended range of positive and negative values of the two-body scattering length $a$ close to the un
A recent rejuvenation of experimental and theoretical interest in the physics of few- body systems has provided deep, fundamental insights into a broad range of problems. Few-body physics is a cross-cutting discipline not restricted to conventional s
The universal behavior of a three-boson system close to the unitary limit is encoded in a simple dependence of many observables in terms of few parameters. For example the product of the three-body parameter $kappa_*$ and the two-body scattering leng
Functional renormalisation group approach is applied to a imbalanced many- fermion system with a short-range attractive force. Composite boson field is introduced to describe the pairing between different flavour fermions. A set of approximate flow e