ترغب بنشر مسار تعليمي؟ اضغط هنا

Weak magnetic order in high-Tc superconductors produced by spontaneous Josephson currents

186   0   0.0 ( 0 )
 نشر من قبل David Moeckli
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a model for high-Tc superconductors based on an electronic phase separation where low-and high-density domains are formed. At low temperatures this system may act as a granular superconductor forming an array of Josephson junctions. Cuprates are also known to have low superfluid densities and strong correlation effects. Both characteristics activate a negative Josephson coupling due to frustration that leads to spontaneous currents responsible for the weak ferromagnetic order. This original approach reproduces the observed onset of spontaneous magnetic signal and its dependence on the doping level.



قيم البحث

اقرأ أيضاً

We measure the local harmonic generation from superconducting thin films at microwave frequencies to investigate the intrinsic nonlinear Meissner effect near Tc in zero magnetic field. Both second and third harmonic generation are measured to identif y time-reversal symmetry breaking (TRSB) and time-reversal symmetric (TRS) nonlinearities. We perform a systematic doping-dependent study of the nonlinear response and find that the TRS characteristic nonlinearity current density scale follows the doping dependence of the de-pairing critical current density. We also extract a spontaneous TRSB characteristic current density scale that onsets at Tc, grows with decreasing temperature, and systematically decreases in magnitude (at fixed T/Tc) with under-doping. The origin of this current scale could be Josephson circulating currents or the spontaneous magnetization associated with a TRSB order parameter.
A quarter of a century after their discovery the mechanism that pairs carriers in the cuprate high-Tc superconductors (HTS) still remains uncertain. Despite this the general consensus is that it is probably magnetic in origin [1] so that the energy s cale for the pairing boson is governed by J, the antiferromagnetic exchange interaction. Recent studies using resonant inelastic X-ray scattering strongly support these ideas [2]. Here as a further test we vary J (as measured by two-magnon Raman scattering) by more than 60% by changing ion sizes in the model HTS system LnA2Cu3O7-{delta} where A=(Ba,Sr) and Ln=(La, Nd, Sm, Eu, Gd, Dy, Yb, Lu). Such changes are often referred to as internal pressure. Surprisingly, we find Tcmax anticorrelates with J where internal pressure is the implicit variable. This is the opposite to the effect of external pressure and suggests that J is not the dominant energy scale governing Tcmax.
106 - S.M. Hayden , G. Aeppli , P. Dai 1997
We review recent measurements of the high-frequency dynamic magnetic susceptibility in the high-$T_c$ superconducting systems La$_{2-x}$Sr$_{x}$CuO$_4$ and YBa$_2$Cu$_3$O$_{6+x}$. Experiments were performed using the chopper spectrometers HET and MAR I at the ISIS spallation source. We have placed our measurements on an absolute intensity scale, this allows systematic trends to be seen and comparisons with theory to be made. We find that the insulating S=1/2 antiferromagnetic parent compounds show a dramatic renormalization of the spin wave intensity. The effect of doping on the response is to cause broadenings in wave vector and large redistributions of spectral weight in the frequency spectrum.
Reproducible high-Tc Josephson junctions have been made in a rather simple two-step process using ion irradiation. A microbridge (1 to 5 ?m wide) is firstly designed by ion irradiating a c-axis-oriented YBa2Cu3O7-? film through a gold mask such as th e non-protected part becomes insulating. A lower Tc part is then defined within the bridge by irradiating with a much lower fluence through a narrow slit (20 nm) opened in a standard electronic photoresist. These planar junctions, whose settings can be finely tuned, exhibit reproducible and nearly ideal Josephson characteristics. This process can be used to produce complex Josephson circuits.
The impact of the normal-state pseudogap, present in all optimal and underdoped HTS cuprates, on critical currents and critical temperature is surveyed. With the opening of the pseudogap around a doping state of p=0.19 the condensation energy and sup erfluid density are rapidly suppressed due to reduction in the normal-state spectral weight. Even by optimal doping (p=0.16) these measures of the strength of superconductivity are diminished by up to 40%. This results in a sharp reduction in critical currents and irreversibility field, respectively. The optimal doping state where these properties are maximised is therefore not at maximum Tc but in the lightly overdoped region where the pseudogap energy falls to zero at p=0.19. The presence of impurities and grain boundaries further heightens these effects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا