ﻻ يوجد ملخص باللغة العربية
We develop a model for high-Tc superconductors based on an electronic phase separation where low-and high-density domains are formed. At low temperatures this system may act as a granular superconductor forming an array of Josephson junctions. Cuprates are also known to have low superfluid densities and strong correlation effects. Both characteristics activate a negative Josephson coupling due to frustration that leads to spontaneous currents responsible for the weak ferromagnetic order. This original approach reproduces the observed onset of spontaneous magnetic signal and its dependence on the doping level.
We measure the local harmonic generation from superconducting thin films at microwave frequencies to investigate the intrinsic nonlinear Meissner effect near Tc in zero magnetic field. Both second and third harmonic generation are measured to identif
A quarter of a century after their discovery the mechanism that pairs carriers in the cuprate high-Tc superconductors (HTS) still remains uncertain. Despite this the general consensus is that it is probably magnetic in origin [1] so that the energy s
We review recent measurements of the high-frequency dynamic magnetic susceptibility in the high-$T_c$ superconducting systems La$_{2-x}$Sr$_{x}$CuO$_4$ and YBa$_2$Cu$_3$O$_{6+x}$. Experiments were performed using the chopper spectrometers HET and MAR
Reproducible high-Tc Josephson junctions have been made in a rather simple two-step process using ion irradiation. A microbridge (1 to 5 ?m wide) is firstly designed by ion irradiating a c-axis-oriented YBa2Cu3O7-? film through a gold mask such as th
The impact of the normal-state pseudogap, present in all optimal and underdoped HTS cuprates, on critical currents and critical temperature is surveyed. With the opening of the pseudogap around a doping state of p=0.19 the condensation energy and sup