ﻻ يوجد ملخص باللغة العربية
Polar ring galaxies are ideal objects with which to study the three-dimensional shapes of galactic gravitational potentials since two rotation curves can be measured in two perpendicular planes. Observational studies have uncovered systematically larger rotation velocities in the extended polar rings than in the associated host galaxies. In the dark matter context, this can only be explained through dark halos that are systematically flattened along the polar rings. Here, we point out that these objects can also be used as very effective tests of gravity theories, such as those based on Milgromian dynamics (MOND). We run a set of polar ring models using both Milgromian and Newtonian dynamics to predict the expected shapes of the rotation curves in both planes, varying the total mass of the system, the mass of the ring with respect to the host, as well as the size of the hole at the center of the ring. We find that Milgromian dynamics not only naturally leads to rotation velocities being typically higher in the extended polar rings than in the hosts, as would be the case in Newtonian dynamics without dark matter, but that it also gets the shape and amplitude of velocities correct. Milgromian dynamics thus adequately explains this particular property of polar ring galaxies.
Scalar-tensor theories of gravity generally violate the strong equivalence principle, namely compact objects have a suppressed coupling to the scalar force, causing them to fall slower. A black hole is the extreme example where such a coupling vanish
The ionization state and oxygen abundance distribution in a sample of polar-ring galaxies (PRGs) were studied from the long-slit spectroscopic observations carried out with the SCORPIO-2 focal reducer at the Russian 6-m telescope. The sample consists
We introduce The Novel Probes Project, an initiative to advance the field of astrophysical tests of the dark sector by creating a forum that connects observers and theorists. This review focuses on tests of gravity and is intended to be of use primar
We consider the electrostatic field of a point charge coupled to Horava-Lifshitz gravity and find an exact solution describing the space with a surplus (or deficit) solid angle. Although, theoretically in general relativity, a surplus angle is hardly
In this paper, we focus on testing gravity theories in the radiative regime using pulsar timing array observations. After reviewing current techniques to measure the dispersion and alternative polarization of gravitational waves, we extend the framew