ﻻ يوجد ملخص باللغة العربية
Time-resolved spectroscopy is performed on eight bright, long gamma-ray bursts (GRBs) dominated by single emission pulses that were observed with the {it Fermi Gamma-ray Space Telescope}. Fitting the prompt radiation of GRBs by empirical spectral forms such as the Band function leads to ambiguous conclusions about the physical model for the prompt radiation. Moreover, the Band function is often inadequate to fit the data. The GRB spectrum is therefore modeled with two emission components consisting of optically thin nonthermal synchrotron radiation from relativistic electrons and, when significant, thermal emission from a jet photosphere, which is represented by a blackbody spectrum. To produce an acceptable fit, the addition of a blackbody component is required in 5 out of the 8 cases. We also find that the low-energy spectral index alpha is consistent with a synchrotron component with alpha = -0.81pm 0.1. This value lies between the limiting values of alpha = -2/3 and alpha = -3/2 for electrons in the slow and fast-cooling regimes, respectively, suggesting ongoing acceleration at the emission site. The blackbody component can be more significant when using a physical synchrotron model instead of the Band function, illustrating that the Band function does not serve as a good proxy for a nonthermal synchrotron emission component. The temperature and characteristic emission-region size of the blackbody component are found to, respectively, decrease and increase as power laws with time during the prompt phase. In addition, we find that the blackbody and nonthermal components have separate temporal behaviors.
A small fraction of GRBs with available data down to soft X-rays ($sim0.5$ keV) have been shown to feature a spectral break in the low-energy part ($sim1-10$ keV) of their prompt emission spectrum. The overall spectral shape is consistent with optica
It has been suggested that the prompt emission in gamma-ray bursts consists of several components giving rise to the observed spectral shape. Here we examine a sample of the 8 brightest, single pulsed {it Fermi} bursts whose spectra are modelled by u
We report on time-resolved spectroscopy of the 63 brightest bursts of SGR J1550-5418, detected with Fermi/Gamma-ray Burst Monitor during its 2008-2009 intense bursting episode. We performed spectral analysis down to 4 ms time-scales, to characterize
We present a direct link between the minimum variability time scales extracted through a wavelet decomposition and the rise times of the shortest pulses extracted via fits of 34 Fermi GBM GRB light curves comprised of 379 pulses. Pulses used in this
We present a search for gamma-ray bursts in the Fermi-GBM 10 year catalog that show similar characteristics to GRB 170817A, the first electromagnetic counterpart to a GRB identified as a binary neutron star (BNS) merger via gravitational wave observa