ﻻ يوجد ملخص باللغة العربية
We study an experimentally feasible qubit system employing neutral atomic currents. Our system is based on bosonic cold atoms trapped in ring-shaped optical lattice potentials. The lattice makes the system strictly one dimensional and it provides the infrastructure to realize a tunable ring-ring interaction. Our implementation combines the low decoherence rates of of neutral cold atoms systems, overcoming single site addressing, with the robustness of topologically protected solid state Josephson flux qubits. Characteristic fluctuations in the magnetic fields affecting Josephson junction based flux qubits are expected to be minimized employing neutral atoms as flux carriers. By breaking the Galilean invariance we demonstrate how atomic currents through the lattice provide a implementation of a qubit. This is realized either by artificially creating a phase slip in a single ring, or by tunnel coupling of two homogeneous ring lattices. The single qubit infrastructure is experimentally investigated with tailored optical potentials. Indeed, we have experimentally realized scaled ring-lattice potentials that could host, in principle, $nsim 10$ of such ring-qubits, arranged in a stack configuration, along the laser beam propagation axis. An experimentally viable scheme of the two-ring-qubit is discussed, as well. Based on our analysis, we provide protocols to initialize, address, and read-out the qubit.
We study a special dynamical regime of a Bose-Einstein condensate in a ring-shaped lattice where the populations in each site remain constant during the time evolution. The states in this regime are characterized by equal occupation numbers in altern
Mean-field dynamics of strongly interacting bosons described by hard core bosons with nearest-neighbor attraction has been shown to support two species of solitons: one of Gross-Pitaevskii (GP-type) where the condensate fraction remains dark and a no
We demonstrate that the transport characteristics of deep optical lattices with one or multiple off-resonant external energy offsets can be greatly-enhanced by modulating the lattice depth in an exotic way. We derive effective stationary models for o
Entanglement is a fundamental resource for quantum information processing, occurring naturally in many-body systems at low temperatures. The presence of entanglement and, in particular, its scaling with the size of system partitions underlies the com
Measurement-based quantum computation, an alternative paradigm for quantum information processing, uses simple measurements on qubits prepared in cluster states, a class of multiparty entangled states with useful properties. Here we propose and analy