ﻻ يوجد ملخص باللغة العربية
Item response theory (IRT) models have been widely used in educational measurement testing. When there are repeated observations available for individuals through time, a dynamic structure for the latent trait of ability needs to be incorporated into the model, to accommodate changes in ability. Other complications that often arise in such settings include a violation of the common assumption that test results are conditionally independent, given ability and item difficulty, and that test item difficulties may be partially specified, but subject to uncertainty. Focusing on time series dichotomous response data, a new class of state space models, called Dynamic Item Response (DIR) models, is proposed. The models can be applied either retrospectively to the full data or on-line, in cases where real-time prediction is needed. The models are studied through simulated examples and applied to a large collection of reading test data obtained from MetaMetrics, Inc.
Item response theory (IRT) has become one of the most popular statistical models for psychometrics, a field of study concerned with the theory and techniques of psychological measurement. The IRT models are latent factor models tailored to the analys
We propose the use of finite mixtures of continuous distributions in modelling the process by which new individuals, that arrive in groups, become part of a wildlife population. We demonstrate this approach using a data set of migrating semipalmated
The relationship between short-term exposure to air pollution and mortality or morbidity has been the subject of much recent research, in which the standard method of analysis uses Poisson linear or additive models. In this paper we use a Bayesian dy
One of the most significant barriers to medication treatment is patients non-adherence to a prescribed medication regimen. The extent of the impact of poor adherence on resulting health measures is often unknown, and typical analyses ignore the time-
Imaging in clinical oncology trials provides a wealth of information that contributes to the drug development process, especially in early phase studies. This paper focuses on kinetic modeling in DCE-MRI, inspired by mixed-effects models that are fre