ﻻ يوجد ملخص باللغة العربية
We provide a set of chiral boundary conditions for three-dimensional gravity that allow for asymptotic symmetries identical to those of two-dimensional induced gravity in light-cone gauge considered by Polyakov. These are the most general boundary conditions consistent with the boundary terms introduced by Compere, Song and Strominger recently. We show that the asymptotic symmetry algebra of our boundary conditions is an sl(2,R) current algebra with level given by c/6. The fully non-linear solution in Fefferman--Graham coordinates is also provided along with its charges.
From pure Yang-Mills action for the $SL(5,mathbb{R})$ group in four Euclidean dimensions we obtain a gravity theory in the first order formalism. Besides the Einstein-Hilbert term, the effective gravity has a cosmological constant term, a curvature s
We study the quantization of the corner symmetry algebra of 3d gravity associated with 1d spatial boundaries. We first recall that in the continuum, this symmetry algebra is given by the central extension of the Poincare loop algebra. At the quantum
A superspace formulation of IIB supergravity which includes the field strengths of the duals of the usual physical one, three and five-form field strengths as well as the eleven-form field strength is given. The superembedding formalism is used to co
We introduce a spin chain based on finite-dimensional spin-1/2 SU(2) representations but with a non-hermitian `Hamiltonian and show, using mostly analytical techniques, that it is described at low energies by the SL(2,R)/U(1) Euclidian black hole Con
This paper has been withdrawn by the author, due to obsolete reference [4], insufficient discussion in sec. 4, and major conceptual error in sec. 5.