ترغب بنشر مسار تعليمي؟ اضغط هنا

Black Hole-Neutron Star Mergers with a Hot Nuclear Equation of State: Outflow and Neutrino-Cooled Disk for a Low-Mass, High-Spin Case

179   0   0.0 ( 0 )
 نشر من قبل Michael Deaton
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Neutrino emission significantly affects the evolution of the accretion tori formed in black hole-neutron star mergers. It removes energy from the disk, alters its composition, and provides a potential power source for a gamma-ray burst. To study these effects, simulations in general relativity with a hot microphysical equation of state and neutrino feedback are needed. We present the first such simulation, using a neutrino leakage scheme for cooling to capture the most essential effects and considering a moderate mass (1.4 M_{odot} neutron star, 5.6 M_{odot} black hole), high spin (black hole J/M^2=0.9) system with the K_0=220 MeV Lattimer-Swesty equation of state. We find that about 0.08 M_{odot} of nuclear matter is ejected from the system, while another 0.3 M_{odot} forms a hot, compact accretion disk. The primary effects of the escaping neutrinos are (i) to make the disk much denser and more compact, (ii) to cause the average electron fraction Y_e of the disk to rise to about 0.2 and then gradually decrease again, and (iii) to gradually cool the disk. The disk is initially hot (T~6 MeV) and luminous in neutrinos (L_{ u}~10^{54} erg s^{-1}), but the neutrino luminosity decreases by an order of magnitude over 50 ms of post-merger evolution.



قيم البحث

اقرأ أيضاً

We present a first exploration of the results of neutron star-black hole mergers using black hole masses in the most likely range of $7M_odot-10M_odot$, a neutrino leakage scheme, and a modeling of the neutron star material through a finite-temperatu re nuclear-theory based equation of state. In the range of black hole spins in which the neutron star is tidally disrupted ($chi_{rm BH}gtrsim 0.7$), we show that the merger consistently produces large amounts of cool ($Tlesssim 1,{rm MeV}$), unbound, neutron-rich material ($M_{rm ej}sim 0.05M_odot-0.20M_odot$). A comparable amount of bound matter is initially divided between a hot disk ($T_{rm max}sim 15,{rm MeV}$) with typical neutrino luminosity $L_ usim 10^{53},{rm erg/s}$, and a cooler tidal tail. After a short period of rapid protonization of the disk lasting $sim 10,{rm ms}$, the accretion disk cools down under the combined effects of the fall-back of cool material from the tail, continued accretion of the hottest material onto the black hole, and neutrino emission. As the temperature decreases, the disk progressively becomes more neutron-rich, with dimmer neutrino emission. This cooling process should stop once the viscous heating in the disk (not included in our simulations) balances the cooling. These mergers of neutron star-black hole binaries with black hole masses $M_{rm BH}sim 7M_odot-10M_odot$ and black hole spins high enough for the neutron star to disrupt provide promising candidates for the production of short gamma-ray bursts, of bright infrared post-merger signals due to the radioactive decay of unbound material, and of large amounts of r-process nuclei.
182 - Chang Liu , Lijing Shao 2021
The detections of gravitational waves (GWs) from binary neutron star (BNS) systems and neutron star--black hole (NSBH) systems provide new insights into dense matter properties in extreme conditions and associated high-energy astrophysical processes. However, currently information about NS equation of state (EoS) is extracted with very limited precision. Meanwhile, the fruitful results from the serendipitous discovery of the $gamma$-ray burst alongside GW170817 show the necessity of early warning alerts. Accurate measurements of the matter effects and sky location could be achieved by joint GW detection from space and ground. In our work, based on two example cases, GW170817 and GW200105, we use the Fisher information matrix analysis to investigate the multiband synergy between the space-borne decihertz GW detectors and the ground-based Einstein Telescope (ET). We specially focus on the parameters pertaining to spin-induced quadrupole moment, tidal deformability, and sky localization. We demonstrate that, (i) only with the help of multiband observations can we constrain the quadrupole parameter; and (ii) with the inclusion of decihertz GW detectors, the errors of tidal deformability would be a few times smaller, indicating that many more EoSs could be excluded; (iii) with the inclusion of ET, the sky localization improves by about an order of magnitude. Furthermore, we have systematically compared the different limits from four planned decihertz detectors and adopting two widely used waveform models.
Recently, the direct detection of gravitational waves from black hole (BH) mergers was announced by the Advanced LIGO Collaboration. Multi-messenger counterparts of stellar-mass BH mergers are of interest, and it had been suggested that a small disk or celestial body may be involved in the binary of two BHs. To test such possibilities, we consider the fate of a wind powered by an active mini-disk in a relatively short, super-Eddington accretion episode onto a BH with ~10-100 solar masses. We show that its thermal emission could be seen as a fast optical transient with the duration from hours to days. We also find that the coasting outflow forms external shocks due to interaction with the interstellar medium, whose synchrotron emission might be expected in the radio band on a time scale of years. Finally, we also discuss a possible jet component and the associated high-energy neutrino emission as well as ultra-high-energy cosmic-ray acceleration.
Detection of electromagnetic counterparts of gravitational wave (GW) sources is important to unveil the nature of compact binary coalescences. We perform three-dimensional, time-dependent, multi-frequency radiative transfer simulations for radioactiv ely powered emission from the ejecta of black hole (BH) - neutron star (NS) mergers. Depending on the BH to NS mass ratio, spin of the BH, and equations of state of dense matter, BH-NS mergers can eject more material than NS-NS mergers. In such cases, radioactively powered emission from the BH-NS merger ejecta can be more luminous than that from NS-NS mergers. We show that, in spite of the expected larger distances to BH-NS merger events, observed brightness of BH-NS mergers can be comparable to or even higher than that of NS-NS mergers. We find that, when the tidally disrupted BH-NS merger ejecta are confined to a small solid angle, the emission from BH-NS merger ejecta tends to be bluer than that from NS-NS merger ejecta for a given total luminosity. Thanks to this property, we might be able to distinguish BH-NS merger events from NS-NS merger events by multi-band observations of the radioactively powered emission. In addition to the GW observations, such electromagnetic observations can potentially provide independent information on the nature of compact binary coalescences.
LIGO and Virgos third observing run (O3) revealed the first neutron star-black hole (NSBH) merger candidates in gravitational waves. These events are predicted to synthesize r-process elements creating optical/near-IR kilonova (KN) emission. The join t gravitational-wave (GW) and electromagnetic detection of an NSBH merger could be used to constrain the equation of state of dense nuclear matter, and independently measure the local expansion rate of the universe. Here, we present the optical follow-up and analysis of two of the only three high-significance NSBH merger candidates detected to date, S200105ae and S200115j, with the Zwicky Transient Facility (ZTF). ZTF observed $sim$,48% of S200105ae and $sim$,22% of S200115js localization probabilities, with observations sensitive to KNe brighter than $-$17.5,mag fading at 0.5,mag/day in g- and r-bands; extensive searches and systematic follow-up of candidates did not yield a viable counterpart. We present state-of-the-art KN models tailored to NSBH systems that place constraints on the ejecta properties of these NSBH mergers. We show that with depths of $rm m_{rm AB}approx 22$ mag, attainable in meter-class, wide field-of-view survey instruments, strong constraints on ejecta mass are possible, with the potential to rule out low mass ratios, high BH spins, and large neutron star radii.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا