ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-equilibrium fluctuations in frictional granular motor: experiments and kinetic theory

281   0   0.0 ( 0 )
 نشر من قبل Alessandro Sarracino
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the study of a new experimental granular Brownian motor, inspired to the one published in [Phys. Rev. Lett. 104, 248001 (2010)], but different in some ingredients. As in that previous work, the motor is constituted by a rotating pawl whose surfaces break the rotation-inversion symmetry through alternated patches of different inelasticity, immersed in a gas of granular particles. The main novelty of our experimental setup is in the orientation of the main axis, which is parallel to the (vertical) direction of shaking of the granular fluid, guaranteeing an isotropic distribution for the velocities of colliding grains, characterized by a variance $v_0^2$. We also keep the granular system diluted, in order to compare with Boltzmann-equation-based kinetic theory. In agreement with theory, we observe for the first time the crucial role of Coulomb friction which induces two main regimes: (i) rare collisions (RC), with an average drift $ < omega > sim v_0^3$, and (ii) frequent collisions (FC), with $ < omega > sim v_0$. We also study the fluctuations of the angle spanned in a large time interval, $Delta theta$, which in the FC regime is proportional to the work done upon the motor. We observe that the Fluctuation Relation is satisfied with a slope which weakly depends on the relative collision frequency.



قيم البحث

اقرأ أيضاً

258 - Vicente Garzo 2007
Many features of granular media can be modelled as a fluid of hard spheres with {em inelastic} collisions. Under rapid flow conditions, the macroscopic behavior of grains can be described through hydrodynamic equations. At low-density, a fundamental basis for the derivation of the hydrodynamic equations and explicit expressions for the transport coefficients appearing in them is provided by the Boltzmann kinetic theory conveniently modified to account for inelastic binary collisions. The goal of this chapter is to give an overview of the recent advances made for binary granular gases by using kinetic theory tools. Some of the results presented here cover aspects such as transport properties, energy nonequipartition, instabilities, segregation or mixing, non-Newtonian behavior, .... In addition, comparison of the analytical results with those obtained from Monte Carlo and molecular dynamics simulations is also carried out, showing the reliability of kinetic theory to describe granular flows even for strong dissipation.
280 - A. Barrat , A. Puglisi , E. Trizac 2008
A driven granular material, e.g. a vibrated box full of sand, is a stationary system which may be very far from equilibrium. The standard equilibrium statistical mechanics is therefore inadequate to describe fluctuations in such a system. Here we pre sent numerical and analytical results concerning energy and injected power fluctuations. In the first part we explain how the study of the probability density function (pdf) of the fluctuations of total energy is related to the characterization of velocity correlations. Two different regimes are addressed: the gas driven at the boundaries and the homogeneously driven gas. In a granular gas, due to non-Gaussianity of the velocity pdf or lack of homogeneity in hydrodynamics profiles, even in the absence of velocity correlations, the fluctuations of total energy are non-trivial and may lead to erroneous conclusions about the role of correlations. In the second part of the chapter we take into consideration the fluctuations of injected power in driven granular gas models. Recently, real and numerical experiments have been interpreted as evidence that the fluctuations of power injection seem to satisfy the Gallavotti-Cohen Fluctuation Relation. We will discuss an alternative interpretation of such results which invalidates the Gallavotti-Cohen symmetry. Moreover, starting from the Liouville equation and using techniques from large deviation theory, the general validity of a Fluctuation Relation for power injection in driven granular gases is questioned. Finally a functional is defined using the Lebowitz-Spohn approach for Markov processes applied to the linear inelastic Boltzmann equation relevant to describe the motion of a tracer particle. Such a functional results to be different from injected power and to satisfy a Fluctuation Relation.
Simulated granular packings with different particle friction coefficient mu are examined. The distribution of the particle-particle and particle-wall normal and tangential contact forces P(f) are computed and compared with existing experimental data. Here f equivalent to F/F-bar is the contact force F normalized by the average value F-bar. P(f) exhibits exponential-like decay at large forces, a plateau/peak near f = 1, with additional features at forces smaller than the average that depend on mu. Computations of the force-force spatial distribution function and the contact point radial distribution function indicate that correlations between forces are only weakly dependent on friction and decay rapidly beyond approximately three particle diameters. Distributions of the particle-particle contact angles show that the contact network is not isotropic and only weakly dependent on friction. High force-bearing structures, or force chains, do not play a dominant role in these three dimensional, unloaded packings.
This study numerically and analytically investigates the dynamics of a rotor under viscous or dry friction as a non-equilibrium probe of a granular gas. In order to demonstrate the role of the rotor as a probe for a non-equilibrium bath, the molecula r dynamics (MD) simulation of the rotor is performed under viscous or dry friction surrounded by a steady granular gas under gravity. A one- to-one map between the velocity distribution function (VDF) of the granular gas and the angular distribution function for the rotor is theoretically derived. The MD simulation demonstrates that the one-to-one map accurately infers the local VDF of the granular gas from the angular VDF of the rotor, and vice versa.
We study experimentally the particle velocity fluctuations in an electrostatically driven dilute granular gas. The experimentally obtained velocity distribution functions have strong deviations from Maxwellian form in a wide range of parameters. We h ave found that the tails of the distribution functions are consistent with a stretched exponential law with typical exponents of the order 3/2. Molecular dynamic simulations shows qualitative agreement with experimental data. Our results suggest that this non-Gaussian behavior is typical for most inelastic gases with both short and long range interactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا