ترغب بنشر مسار تعليمي؟ اضغط هنا

Estimating Uncertain Spatial Relationships in Robotics

76   0   0.0 ( 0 )
 نشر من قبل Randall Smith
 تاريخ النشر 2013
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we describe a representation for spatial information, called the stochastic map, and associated procedures for building it, reading information from it, and revising it incrementally as new information is obtained. The map contains the estimates of relationships among objects in the map, and their uncertainties, given all the available information. The procedures provide a general solution to the problem of estimating uncertain relative spatial relationships. The estimates are probabilistic in nature, an advance over the previous, very conservative, worst-case approaches to the problem. Finally, the procedures are developed in the context of state-estimation and filtering theory, which provides a solid basis for numerous extensions.



قيم البحث

اقرأ أيضاً

Embedding models for deterministic Knowledge Graphs (KG) have been extensively studied, with the purpose of capturing latent semantic relations between entities and incorporating the structured knowledge into machine learning. However, there are many KGs that model uncertain knowledge, which typically model the inherent uncertainty of relations facts with a confidence score, and embedding such uncertain knowledge represents an unresolved challenge. The capturing of uncertain knowledge will benefit many knowledge-driven applications such as question answering and semantic search by providing more natural characterization of the knowledge. In this paper, we propose a novel uncertain KG embedding model UKGE, which aims to preserve both structural and uncertainty information of relation facts in the embedding space. Unlike previous models that characterize relation facts with binary classification techniques, UKGE learns embeddings according to the confidence scores of uncertain relation facts. To further enhance the precision of UKGE, we also introduce probabilistic soft logic to infer confidence scores for unseen relation facts during training. We propose and evaluate two variants of UKGE based on different learning objectives. Experiments are conducted on three real-world uncertain KGs via three tasks, i.e. confidence prediction, relation fact ranking, and relation fact classification. UKGE shows effectiveness in capturing uncertain knowledge by achieving promising results on these tasks, and consistently outperforms baselines on these tasks.
184 - Saisai Ma , Jiuyong Li , Lin Liu 2018
With the increasing need of personalised decision making, such as personalised medicine and online recommendations, a growing attention has been paid to the discovery of the context and heterogeneity of causal relationships. Most existing methods, ho wever, assume a known cause (e.g. a new drug) and focus on identifying from data the contexts of heterogeneous effects of the cause (e.g. patient groups with different responses to the new drug). There is no approach to efficiently detecting directly from observational data context specific causal relationships, i.e. discovering the causes and their contexts simultaneously. In this paper, by taking the advantages of highly efficient decision tree induction and the well established causal inference framework, we propose the Tree based Context Causal rule discovery (TCC) method, for efficient exploration of context specific causal relationships from data. Experiments with both synthetic and real world data sets show that TCC can effectively discover context specific causal rules from the data.
Much of the controversy about methods for automated decision making has focused on specific calculi for combining beliefs or propagating uncertainty. We broaden the debate by (1) exploring the constellation of secondary tasks surrounding any primary decision problem, and (2) identifying knowledge engineering concerns that present additional representational tradeoffs. We argue on pragmatic grounds that the attempt to support all of these tasks within a single calculus is misguided. In the process, we note several uncertain reasoning objectives that conflict with the Bayesian ideal of complete specification of probabilities and utilities. In response, we advocate treating the uncertainty calculus as an object language for reasoning mechanisms that support the secondary tasks. Arguments against Bayesian decision theory are weakened when the calculus is relegated to this role. Architectures for uncertainty handling that take statements in the calculus as objects to be reasoned about offer the prospect of retaining normative status with respect to decision making while supporting the other tasks in uncertain reasoning.
When securing complex infrastructures or large environments, constant surveillance of every area is not affordable. To cope with this issue, a common countermeasure is the usage of cheap but wide-ranged sensors, able to detect suspicious events that occur in large areas, supporting patrollers to improve the effectiveness of their strategies. However, such sensors are commonly affected by uncertainty. In the present paper, we focus on spatially uncertain alarm signals. That is, the alarm system is able to detect an attack but it is uncertain on the exact position where the attack is taking place. This is common when the area to be secured is wide such as in border patrolling and fair site surveillance. We propose, to the best of our knowledge, the first Patrolling Security Game model where a Defender is supported by a spatially uncertain alarm system which non-deterministically generates signals once a target is under attack. We show that finding the optimal strategy in arbitrary graphs is APX-hard even in zero-sum games and we provide two (exponential time) exact algorithms and two (polynomial time) approximation algorithms. Furthermore, we analyse what happens in environments with special topologies, showing that in linear and cycle graphs the optimal patrolling strategy can be found in polynomial time, de facto allowing our algorithms to be used in real-life scenarios, while in trees the problem is NP-hard. Finally, we show that without false positives and missed detections, the best patrolling strategy reduces to stay in a place, wait for a signal, and respond to it at best. This strategy is optimal even with non-negligible missed detection rates, which, unfortunately, affect every commercial alarm system. We evaluate our methods in simulation, assessing both quantitative and qualitative aspects.
Uncertain partially observable Markov decision processes (uPOMDPs) allow the probabilistic transition and observation functions of standard POMDPs to belong to a so-called uncertainty set. Such uncertainty, referred to as epistemic uncertainty, captu res uncountable sets of probability distributions caused by, for instance, a lack of data available. We develop an algorithm to compute finite-memory policies for uPOMDPs that robustly satisfy specifications against any admissible distribution. In general, computing such policies is theoretically and practically intractable. We provide an efficient solution to this problem in four steps. (1) We state the underlying problem as a nonconvex optimization problem with infinitely many constraints. (2) A dedicated dualization scheme yields a dual problem that is still nonconvex but has finitely many constraints. (3) We linearize this dual problem and (4) solve the resulting finite linear program to obtain locally optimal solutions to the original problem. The resulting problem formulation is exponentially smaller than those resulting from existing methods. We demonstrate the applicability of our algorithm using large instances of an aircraft collision-avoidance scenario and a novel spacecraft motion planning case study.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا