ترغب بنشر مسار تعليمي؟ اضغط هنا

Sensitivity of measured fission yields on prompt-neutron corrections

237   0   0.0 ( 0 )
 نشر من قبل Ali Al-Adili
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The amount of emitted prompt neutrons from the fission fragments increases as a function of excitation energy. Yet it is not fully understood whether the increase in u(A) as a function of E_{n} is mass dependent. The share of excitation energies among the fragments is still under debate, but there are reasons to believe that the excess in neutron emission originates only from the heavy fragments, leaving u_{light}(A) almost unchanged. In this work we investigated the consequences of a mass-dependent increase in u(A) on the final mass and energy distributions. The assumptions on u(A) are essential when analysing measurements based on the 2E-technique. This choice showed to be significant on the measured observables. For example, the post-neutron emission mass yield distribution revealed changes up to 10-30%. The outcome of this work pinpoint the urgent need to determine u(A) experimentally, and in particular, how u(A) changes as a function of incident-neutron energy. Until then, many fission yields in the data libraries could be largely affected, since they were analysed based on another assumption on the neutron emission.



قيم البحث

اقرأ أيضاً

The structure effects of the fission fragments on their yields are studied within the statical theory with the inputs, like, excitation energies and level density parameters for the fission fragments at a given temperature calculated using the temper ature dependent relativistic mean field formalism (TRMF). For the comparison, the results are also obtained using the finite range droplet model. At temperatures $T =1-2$ MeV, the structural effects of the fission fragments influence their yields. It is also seen that at $T = $ 3 MeV, the fragments become spherical and the fragments distribution peaks at a close shell or near close shell nucleus.
Fission fragment angular distributions can provide an important constraint on fission theory, improving predictive fission codes, and are a prerequisite for a precise ratio cross section measurement. Available anisotropy data is sparse, especially at neutron energies above 5 MeV. For the first time, a three-dimensional tracking detector is employed to study fragment emission angles and provide a direct measurement of angular anisotropy. The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) collaboration has deployed the fission time projection chamber (fissionTPC) to measure nuclear data with unprecedented precision. The fission fragment anisotropy of $^{235}$U has been measured over a wide range of incident neutron energies from 180 keV to 200 MeV; a careful study of the systematic uncertainties complement the data.
The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) collaboration has performed measurements with a fission time projection chamber (fissionTPC) to study the fission process by reconstructing full three-dimensional tracks of fission fra gments and other ionizing radiation. The amount of linear momentum imparted to the fissioning nucleus by the incident neutron can be inferred by measuring the opening angle between the fission fragments. Using this measured linear momentum, fission fragment angular distributions can be converted to the center-of-mass frame for anisotropy measurements. Angular anisotropy is an important experimental observable for understanding the quantum mechanical state of the fissioning nucleus and vital to determining detection efficiency for cross section measurements. Neutron linear momentum transfer to fissioning $^{235}$U, $^{238}$U, and $^{239}$Pu and fission fragment angular anisotropy of $^{235}$U and $^{238}$U as a function of neutron energies in the range 130 keV--250 MeV are presented.
A direct and complete measurement of isotopic fission-fragment yields of $^{239}$U has been performed for the first time. The $^{239}$U fissioning system was produced with an average excitation energy of 8.3 MeV in one-neutron transfer reactions betw een a $^{238}$U beam and a $^{9}$Be target at Coulomb barrier energies. The fission fragments were detected and isotopically identified using the VAMOS++ spectrometer at the GANIL facility. This measurement allows to directly evaluate the fission models at excitation energies of fast neutrons, relevant for next-generation nuclear reactors. The present data, in agreement with model calculations, do not support the recently reported anomaly in the fission-fragment yields of $^{239}$U and confirm the persistence of spherical shell effects in the Sn region at excitation energies exceeding the fission barrier by few MeV.
We reinvestigated the neutron multiplicity yields of Ba-Mo, Ce-Zr, Te-Pd, and Nd-Sr from the spontaneous fission of $^{252}$Cf; by (i) using both $gamma$-$gamma$-$gamma$-$gamma$ and $gamma$-$gamma$-$gamma$ coincidence data, (ii) using up to date leve l scheme structures, and (iii) cross-checking analogous energy transitions in multiple isotopes, we have achieved higher precision than previous analyses. Particular attention was given to the Ba-Mo pairs where our results clearly confirm that the Ba-Mo yield data have a second hot fission mode where 8, 9, 10, and now 11 neutron evaporation channels are observed. These are the first observations of the 11 neutron channel. These 8-11 neutron channels are observed for the first time in the Ce-Zr pairs, but are not observed in other fission pairs. The measured intensities of the second mode in Ba-Mo and Ce-Zr pairs are $sim$1.5(4)$%$ and $sim$1.0(3)$%$, respectively. These high neutron number evaporation modes can be an indication of hyperdeformation and/or octupole deformation in $^{143-145}$Ba and in $^{146,148}$Ce at scission to give rise to such high neutron multiplicities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا