ترغب بنشر مسار تعليمي؟ اضغط هنا

Entropy Current Formalism for Supersymmetric Theories

117   0   0.0 ( 0 )
 نشر من قبل Laura Andrianopoli Dr
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The recent developments in fluid/gravity correspondence give a new impulse to the study of fluid dynamics of supersymmetric theories. In that respect, the entropy current formalism requires some modifications in order to be adapted to supersymmetric theories and supergravities. We formulate a new entropy current in superspace with the properties: 1) it is conserved off-shell for non dissipative fluids, 2) it is invariant under rigid supersymmetry transformations 3) it is covariantly closed in local supersymmetric theories 4) it reduces to its bosonic expression on space-time.



قيم البحث

اقرأ أيضاً

We study field models for which a quantum action (i.e. the action appearing in the generating functional of Green functions) is invariant under supersymmetric transformations. We derive the Ward identity which is direct consequence of this invariance . We consider a change of variables in functional integral connected with supersymmetric transformations when its parameter is replaced by a nilpotent functional of fields. Exact form of the corresponding Jacobian is found. We find restrictions on generators of supersymmetric transformations when a consistent quantum description of given field theories exists.
We propose an entropy current for dynamical black holes in a theory with arbitrary four derivative corrections to Einsteins gravity, linearized around a stationary black hole. The Einstein-Gauss-Bonnet theory is a special case of the class of theorie s that we consider. Within our approximation, our construction allows us to write down a completely local version of the second law of black hole thermodynamics, in the presence of the higher derivative corrections considered here. This ultra-local, stronger form of the second law is a generalization of a weaker form, applicable to the total entropy, integrated over a compact `time-slice of the horizon, a proof of which has been recently presented in arXiv:1504.08040. We also provide a general algorithm to construct the entropy current for the four derivative theories, which may be straightforwardly generalized to arbitrary higher derivative corrections to Einsteins gravity. This algorithm highlights the possible ambiguities in defining the entropy current.
We compare the metric and the Palatini formalism to obtain the Einstein equations in the presence of higher-order curvature corrections that consist of contractions of the Riemann tensor, but not of its derivatives. We find that in general the two fo rmalisms are not equivalent and that the set of solutions of the Palatini equations is a non-trivial subset of the solutions of the metric equations. However we also argue that for Lovelock gravities, the equivalence of the two formalism holds completely and give an explanation of why it holds precisely for these theories.
74 - Masazumi Honda 2017
In supersymmetric (SUSY) field theory, there exist configurations which formally satisfy SUSY conditions but are not on original path integral contour. We refer to such configurations as complexified supersymmetric solutions (CSS). In this paper we d iscuss that CSS provide important information on large order behavior of weak coupling perturbative series in SUSY field theories. We conjecture that CSS with a bosonic (fermionic) free parameter give poles (zeroes) of Borel transformation of perturbative series whose locations are uniquely determined by actions of the solutions. We demonstrate this for various SUSY observables in 3d $mathcal{N}=2$ SUSY Chern-Simons matter theories on sphere. First we construct infinite number of CSS in general 3d $mathcal{N}=2$ SUSY theory with Lagrangian where adjoint scalar in vector multiplet takes a complex value and matter fields are nontrivial. Then we compare their actions with Borel transformations of perturbative expansions by inverse Chern-Simons levels for the observables and see agreement with our conjecture. It turns out that the CSS explain all the Borel singularities for this case.
We analyse the relation between anomalies in their manifestly supersymmetric formulation in superspace and their formulation in Wess-Zumino (WZ) gauges. We show that there is a one-to-one correspondence between the solutions of the cohomology problem in the two formulations and that they are related by a particular choice of a superspace counterterm (scheme). Any apparent violation of $Q$-supersymmetry is due to an explicit violation by the counterterm which defines the scheme equivalent to the WZ gauge. It is therefore removable.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا