ﻻ يوجد ملخص باللغة العربية
We determine the response of a uniformly rotating star to tidal perturbations due to a companion. General periodic orbits and parabolic flybys are considered. We evaluate energy and angular momentum exchange rates as a sum of contributions from normal modes allowing for dissipative processes. We consider the case when the response is dominated by the contribution of an identifiable regular spectrum of low frequency modes, such as gravity modes and evaluate it in the limit of very weak dissipation. Our formalism may be applied both to Sun-like stars with radiative cores and convective envelopes and to more massive stars with convective cores and radiative envelopes. We provide general expressions for transfer of energy and angular momentum valid for an orbit with any eccentricity. Detailed calculations are made for Sun-like stars in the slow rotation regime where centrifugal distortion is neglected in the equilibrium and the traditional approximation is made for the normal modes. We use both a WKBJ procedure and direct numerical evaluation which are found to be in good agreement for regimes of interest. Finally we use our formalism to determine the evolution time scales for an object, in an orbit of small eccentricity, around a Sun-like star in which the tidal response is assumed to occur. Systems with either no rotation or synchronous rotation are considered. Only rotationally modified gravity modes are taken into account under the assumption that wave dissipation occurs close to the stellar centre.
We review our recent results on a unified normal mode approach to dynamic tides proposed in Ivanov, Papaloizou $&$ Chernov (2013) and Chernov, Papaloizou $&$ Ivanov (2013). Our formalism can be used whenever the tidal interactions are mainly determin
Zahns theory of dynamical tides is analyzed critically. We compare the results of this theory with our numerical calculations for stars with a convective core and a radiative envelope and with masses of one and a half and two solar masses. We show th
The X-ray and extreme-ultraviolet (EUV) emissions from the low-mass stars significantly affect the evolution of the planetary atmosphere. However, it is, observationally difficult to constrain the stellar high-energy emission because of the strong in
The advent of Gaia, capable of measuring stellar wobbles caused by orbiting planets, raised an interest to the astrometric detection of exoplanets. Another source of such wobbles (often also called jitter) is stellar magnetic activity. A quantitative
All the studies of the interaction between tides and a convective flow assume that the large scale tides can be described as a mean shear flow which is damped by small scale fluctuating convective eddies. The convective Reynolds stress is calculated