ترغب بنشر مسار تعليمي؟ اضغط هنا

Implications of the AMS-02 positron fraction in cosmic rays

194   0   0.0 ( 0 )
 نشر من قبل Qiang Yuan
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The AMS-02 collaboration has just released its first result of the cosmic positron fraction $e^+/(e^-+e^+)$ with high precision up to $sim 350$ GeV. The AMS-02 result shows the same trend with the previous PAMELA result, which requires extra electron/positron sources on top of the conventional cosmic ray background, either from astrophysical sources or from dark matter annihilation/decay. In this paper we try to figure out the nature of the extra sources by fitting to the AMS-02 $e^+/(e^-+e^+)$ data, as well as the electron and proton spectra by PAMELA and the $(e^-+e^+)$ spectrum by Fermi and HESS. We adopt the GALPROP package to calculate the propagation of the Galactic cosmic rays and the Markov Chain Monte Carlo sampler to do the fit. We find that the AMS-02 data have implied essential difference from the PAMELA data. There is {rm tension} between the AMS-02 $e^+/(e^-+e^+)$ data and the Fermi/HESS $(e^-+e^+)$ spectrum, that the AMS-02 data requires less contribution from the extra sources than Fermi/HESS. Then we redo the fit without including the Fermi/HESS data. In this case both the pulsars and dark matter annihilation/decay can explain the AMS-02 data. The pulsar scenario has a soft inject spectrum with the power-law index $sim 2$, while the dark matter scenario needs $tau^+tau^-$ final state with mass $sim 600$ GeV and a boost factor $sim 200$.



قيم البحث

اقرأ أيضاً

The cosmic-ray flux of positrons is measured with high precision by the space-borne particle spectrometer AMS-02. The hypothesis that pulsar wind nebulae (PWNe) can significantly contribute to the excess of the positron ($e^+$) cosmic-ray flux has be en consolidated after the observation of a $gamma$-ray emission at TeV energies of a few degree size around Geminga and Monogem PWNe. In this work we undertake massive simulations of galactic pulsars populations, adopting different distributions for their position in the Galaxy, intrinsic physical properties, pair emission models, in order to overcome the incompleteness of the ATNF catalogue. We fit the $e^+$ AMS-02 data together with a secondary component due to collisions of primary cosmic rays with the interstellar medium. We find that several mock galaxies have a pulsar population able to explain the observed $e^+$ flux, typically by few, bright sources. We determine the physical parameters of the pulsars dominating the $e^+$ flux, and assess the impact of different assumptions on radial distributions, spin-down properties, Galactic propagation scenarios and $e^+$ emission time.
86 - Qiang Yuan 2018
We study the propagation and injection models of cosmic rays using the latest measurements of the Boron-to-Carbon ratio and fluxes of protons, Helium, Carbon, and Oxygen nuclei by the Alpha Magnetic Spectrometer and the Advanced Composition Explorer at top of the Earth, and the Voyager spacecraft outside the heliosphere. The ACE data during the same time interval of the AMS-02 data are extracted to minimize the complexity of the solar modulation effect. We find that the cosmic ray nucleus data favor a modified version of the diffusion-reacceleration scenario of the propagation. The diffusion coefficient is, however, required to increase moderately with decreasing rigidity at low energies, which has interesting implications on the particle and plasma interaction in the Milky Way. We further find that the low rigidity ($<$ a few GV) injection spectra are different for different compositions. The injection spectra are softer for lighter nuclei. These results are expected to be helpful in understanding the acceleration process of cosmic rays.
129 - C. Jin , Y. Q. Guo , H. B. Hu 2015
The precise spectra of Cosmic Ray (CR) electrons and positrons have been published by the measurement of AMS-02. It is reasonable to regard the difference between the electrons and positrons spectra ( $triangle Phi= Phi_{e^-}-Phi_{e^+}$ ) as being do minated by primary electrons. Noticing that the resulting electron spectrum shows no sign of spectral softening above 20 GeV, which is in contrast with the prediction of standard model. In this work, we generalize the analytic one dimensional two-halo model of diffusion to a three dimensional realistic calculation by implementing a spatial variant diffusion coefficients in DRAGON package. As a result, we can reproduce the spectral hardening of protons observed by several experiments, and predict an excess of high energy primary electrons which agrees with the measurement reasonably well. Unlike the break spectrum obtained for protons, the model calculation predicts a smooth electron excess and thus slightly over predicts the flux from tens of GeV to 100GeV. To understand this issue, further experimental and theoretical studies are necessary.
131 - L. Derome , D. Maurin , P. Salati 2019
AMS-02 on the International Space Station has been releasing data of unprecedented accuracy. This poses new challenges for their interpretation. We refine the methodology to get a statistically sound determination of the cosmic-ray propagation parame ters. We inspect the numerical precision of the model calculation, nuclear cross-section uncertainties, and energy correlations in data systematic errors. We used the 1D diffusion model in USINE. Our $chi^2$ analysis includes a covariance matrix of errors for AMS-02 systematics and nuisance parameters to account for cross-section uncertainties. Mock data were used to validate some of our choices. We show that any mis-modelling of nuclear cross-section values or the energy correlation length of the covariance matrix of errors biases the analysis. It also makes good models ($chi^2_{rm min}/{rm dof}approx1$) appear as excluded ($chi^2_{rm min}/{rm dof}gg1$). We provide a framework to mitigate these effects (AMS-02 data are interpreted in a companion paper). New production cross-section data and the publication by the AMS-02 collaboration of a covariance matrix of errors for each data set would be an important step towards an unbiased view of cosmic-ray propagation in the Galaxy.
79 - Jan Heisig 2020
Cosmic-ray antiprotons are a powerful tool for astroparticle physics. While the bulk of measured antiprotons is consistent with a secondary origin, the precise data of the AMS-02 experiment provides us with encouraging prospects to search for a subdo minant primary component, e.g. from dark matter. In this brief review, we discuss recent limits on heavy dark matter as well as a tentative signal from annihilation of dark matter with a mass $lesssim 100$ GeV. We emphasize the special role of systematic errors that can affect the signal. In particular, we discuss recent progress in the modeling of secondary production cross sections and correlated errors in the AMS-02 data, the dominant ones originating from uncertainties in the cross sections for cosmic-ray absorption in the detector.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا