ترغب بنشر مسار تعليمي؟ اضغط هنا

Response of the XENON100 Dark Matter Detector to Nuclear Recoils

124   0   0.0 ( 0 )
 نشر من قبل Marc Weber
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Results from the nuclear recoil calibration of the XENON100 dark matter detector installed underground at the Laboratori Nazionali del Gran Sasso (LNGS), Italy are presented. Data from measurements with an external 241AmBe neutron source are compared with a detailed Monte Carlo simulation which is used to extract the energy dependent charge-yield Qy and relative scintillation efficiency Leff. A very good level of absolute spectral matching is achieved in both observable signal channels - scintillation S1 and ionization S2 - along with agreement in the 2-dimensional particle discrimination space. The results confirm the validity of the derived signal acceptance in earlier reported dark matter searches of the XENON100 experiment.



قيم البحث

اقرأ أيضاً

We report on WIMP search results in the XENON100 detector using a non-relativistic effective field theory approach. The data from science run II (34 kg $times$ 224.6 live days) was re-analyzed, with an increased recoil energy interval compared to pre vious analyses, ranging from $(6.6 - 240)~mathrm{keV_mathrm{nr}}$. The data is found to be compatible with the background-only hypothesis. We present 90% confidence level exclusion limits on the coupling constants of WIMP-nucleon effective operators using a binned profile likelihood method. We also consider the case of inelastic WIMP scattering, where incident WIMPs may up-scatter to a higher mass state, and set exclusion limits on this model as well.
The XENON100 dark matter experiment uses liquid xenon (LXe) in a time projection chamber (TPC) to search for Xe nuclear recoils resulting from the scattering of dark matter Weakly Interacting Massive Particles (WIMPs). In this paper we present a deta iled description of the detector design and present performance results, as established during the commissioning phase and during the first science runs. The active target of XENON100 contains 62 kg of LXe, surrounded by an LXe veto of 99 kg, both instrumented with photomultiplier tubes (PMTs) operating inside the liquid or in Xe gas. The LXe target and veto are contained in a low-radioactivity stainless steel vessel, embedded in a passive radiation shield. The experiment is installed underground at the Laboratori Nazionali del Gran Sasso (LNGS), Italy and has recently published results from a 100 live-days dark matter search. The ultimate design goal of XENON100 is to achieve a spin-independent WIMP-nucleon scattering cross section sensitivity of sigma = 2x10^-45 cm^2 for a 100 GeV/c^2 WIMP.
We report a measurement of the ionization efficiency of silicon nuclei recoiling with sub-keV kinetic energy in the bulk silicon of a charge-coupled device (CCD). Nuclear recoils are produced by low-energy neutrons ($<$24 keV) from a $^{124}$Sb-$^{9} $Be photoneutron source, and their ionization signal is measured down to 60 eV electron equivalent. This energy range, previously unexplored, is relevant for the detection of low-mass dark matter particles. The measured efficiency is found to deviate from the extrapolation to low energies of the Lindhard model. This measurement also demonstrates the sensitivity to nuclear recoils of CCDs employed by DAMIC, a dark matter direct detection experiment located in the SNOLAB underground laboratory.
Nuclear emulsion is a well-known detector type proposed also for the directional detection of dark matter. In this paper, we study one of the most important properties of direction-sensitive detectors: the preservation by nuclear recoils of the direc tion of impinging dark matter particles. For nuclear emulsion detectors, it is the first detailed study where a realistic nuclear recoil energy distribution with all possible recoil atom types is exploited. Moreover, for the first time we study the granularity effect on the emulsion detector directional performance. As well as we compare nuclear emulsion with other directional detectors: in terms of direction preservation nuclear emulsion outperforms the other detectors for WIMP masses above 100 GeV/c$^2$.
XENON100 is a liquid xenon (LXe) time projection chamber built to search for rare collisions of hypothetical, weakly interacting massive particles (WIMPs). Operated in a low-background shield at the Gran Sasso underground laboratory in Italy, XENON10 0 has reached the unprecedented background level of $<$0.15 events/day/kevr in the energy range below 100 kevr in 30 kg of target mass, before electronic/nuclear recoil discrimination. It found no evidence for WIMPs during a dark matter run lasting for 100.9 live days in 2010, excluding with 90% confidence scalar WIMP-nucleon cross sections above 7x10$^{-45}$ cm$^{2}$ at a WIMP mass of 50 GeV/c$^{2}$. A new run started in March 2011, and more than 200 live days of WIMP-search data have been acquired. Results of this second run are expected to be released in summer 2012.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا