ترغب بنشر مسار تعليمي؟ اضغط هنا

Markov degree of the Birkhoff model

168   0   0.0 ( 0 )
 نشر من قبل Mitsunori Ogawa
 تاريخ النشر 2013
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove the conjecture by Diaconis and Eriksson (2006) that the Markov degree of the Birkhoff model is three. In fact, we prove the conjecture in a generalization of the Birkhoff model, where each voter is asked to rank a fixed number, say r, of candidates among all candidates. We also give an exhaustive characterization of Markov bases for small r.



قيم البحث

اقرأ أيضاً

We consider the three-state toric homogeneous Markov chain model (THMC) without loops and initial parameters. At time $T$, the size of the design matrix is $6 times 3cdot 2^{T-1}$ and the convex hull of its columns is the model polytope. We study the behavior of this polytope for $Tgeq 3$ and we show that it is defined by 24 facets for all $Tge 5$. Moreover, we give a complete description of these facets. From this, we deduce that the toric ideal associated with the design matrix is generated by binomials of degree at most 6. Our proof is based on a result due to Sturmfels, who gave a bound on the degree of the generators of a toric ideal, provided the normality of the corresponding toric variety. In our setting, we established the normality of the toric variety associated to the THMC model by studying the geometric properties of the model polytope.
We derive a Markov basis consisting of moves of degree at most three for two-state toric homogeneous Markov chain model of arbitrary length without parameters for initial states. Our basis consists of moves of degree three and degree one, which alter the initial frequencies, in addition to moves of degree two and degree one for toric homogeneous Markov chain model with parameters for initial states.
Markov chain models are used in various fields, such behavioral sciences or econometrics. Although the goodness of fit of the model is usually assessed by large sample approximation, it is desirable to use conditional tests if the sample size is not large. We study Markov bases for performing conditional tests of the toric homogeneous Markov chain model, which is the envelope exponential family for the usual homogeneous Markov chain model. We give a complete description of a Markov basis for the following cases: i) two-state, arbitrary length, ii) arbitrary finite state space and length of three. The general case remains to be a conjecture. We also present a numerical example of conditional tests based on our Markov basis.
We discuss properties of distributions that are multivariate totally positive of order two (MTP2) related to conditional independence. In particular, we show that any independence model generated by an MTP2 distribution is a compositional semigraphoi d which is upward-stable and singleton-transitive. In addition, we prove that any MTP2 distribution satisfying an appropriate support condition is faithful to its concentration graph. Finally, we analyze factorization properties of MTP2 distributions and discuss ways of constructing MTP2 distributions; in particular we give conditions on the log-linear parameters of a discrete distribution which ensure MTP2 and characterize conditional Gaussian distributions which satisfy MTP2.
In this paper, we study sparse signal detection problems in Degree Corrected Exponential Random Graph Models (ERGMs). We study the performance of two tests based on the conditionally centered sum of degrees and conditionally centered maximum of degre es, for a wide class of such ERGMs. The performance of these tests match the performance of the corresponding uncentered tests in the $beta$ model. Focusing on the degree corrected two star ERGM, we show that improved detection is possible at criticality using a test based on (unconditional) sum of degrees. In this setting we provide matching lower bounds in all parameter regimes, which is based on correlations estimates between degrees under the alternative, and of possible independent interest.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا