ﻻ يوجد ملخص باللغة العربية
Let $G$ be a finite connected graph on two or more vertices and $G^{[N,k]}$ the distance $k$-graph of the $N$-fold Cartesian power of $G$. For a fixed $kge1$, we obtain explicitly the large $N$ limit of the spectral distribution (the eigenvalue distribution of the adjacency matrix) of $G^{[N,k]}$. The limit distribution is described in terms of the Hermite polynomials. The proof is based on asymptotic combinatorics along with quantum probability theory.
A graph $G$ is a $k$-prime product distance graph if its vertices can be labeled with distinct integers such that for any two adjacent vertices, the difference of their labels is the product of at most $k$ primes. A graph has prime product number $pp
We study the spectrum of a random multigraph with a degree sequence ${bf D}_n=(D_i)_{i=1}^n$ and average degree $1 ll omega_n ll n$, generated by the configuration model, and also the spectrum of the analogous random simple graph. We show that, when
The present paper presents two new approaches to Fourier series and spectral analysis of singular measures.
Let $G=(V,E)$ be a graph and $Gamma $ an Abelian group both of order $n$. A $Gamma$-distance magic labeling of $G$ is a bijection $ell colon Vrightarrow Gamma $ for which there exists $mu in Gamma $ such that $% sum_{xin N(v)}ell (x)=mu $ for all $vi
The relation between Hamiltonicity and toughness of a graph is a long standing research problem. The paper studies the Hamiltonicity of the Cartesian product graph $G_1square G_2$ of graphs $G_1$ and $G_2$ satisfying that $G_1$ is traceable and $G_2$