ﻻ يوجد ملخص باللغة العربية
We present a new classification method for quasar identification in the EROS-2 and MACHO datasets based on a boosted version of Random Forest classifier. We use a set of variability features including parameters of a continuous auto regressive model. We prove that continuous auto regressive parameters are very important discriminators in the classification process. We create two training sets (one for EROS-2 and one for MACHO datasets) using known quasars found in the LMC. Our models accuracy in both EROS-2 and MACHO training sets is about 90% precision and 86% recall, improving the state of the art models accuracy in quasar detection. We apply the model on the complete, including 28 million objects, EROS-2 and MACHO LMC datasets, finding 1160 and 2551 candidates respectively. To further validate our list of candidates, we crossmatched our list with a previous 663 known strong candidates, getting 74% of matches for MACHO and 40% in EROS-2. The main difference on matching level is because EROS-2 is a slightly shallower survey which translates to significantly lower signal-to-noise ratio lightcurves.
The EPOCH (EROS-2 periodic variable star classification using machine learning) project aims to detect periodic variable stars in the EROS-2 light curve database. In this paper, we present the first result of the classification of periodic variable s
We present photometry and analysis of the microlensing alert MACHO 96-LMC-2. The ~3% photometry provided by the Global Microlensing Alert Network follow--up effort reveals a periodic modulation in the lightcurve. We attribute this to binarity of the
Using the exceptional long-term monitoring capabilities of the MACHO project, we present here the optical history of LMC X-2 for a continuous 6-yr period. These data were used to investigate the previously claimed periodicities for this source of 8.1
We present a new QSO selection algorithm using a Support Vector Machine (SVM), a supervised classification method, on a set of extracted times series features including period, amplitude, color, and autocorrelation value. We train a model that separa
The YOLOv3 target detection algorithm is widely used in industry due to its high speed and high accuracy, but it has some limitations, such as the accuracy degradation of unbalanced datasets. The YOLOv3 target detection algorithm is based on a Gaussi