ﻻ يوجد ملخص باللغة العربية
A key parameter to the description of all star formation processes is the density structure of the gas. In this letter, we make use of probability distribution functions (PDFs) of Herschel column density maps of Orion B, Aquila, and Polaris, obtained with the Herschel Gould Belt survey (HGBS). We aim to understand which physical processes influence the PDF shape, and with which signatures. The PDFs of Orion B (Aquila) show a lognormal distribution for low column densities until Av 3 (6), and a power-law tail for high column densities, consistent with a rho r^-2 profile for the equivalent spherical density distribution. The PDF of Orion B is broadened by external compression due to the nearby OB stellar aggregates. The PDF of a quiescent subregion of the non-star-forming Polaris cloud is nearly lognormal, indicating that supersonic turbulence governs the density distribution. But we also observe a deviation from the lognormal shape at Av>1 for a subregion in Polaris that includes a prominent filament. We conclude that (i) the point where the PDF deviates from the lognormal form does not trace a universal Av-threshold for star formation, (ii) statistical density fluctuations, intermittency and magnetic fields can cause excess from the lognormal PDF at an early cloud formation stage, (iii) core formation and/or global collapse of filaments and a non-isothermal gas distribution lead to a power-law tail, and (iv) external compression broadens the column density PDF, consistent with numerical simulations.
Molecular hydrogen being unobservable in cold molecular clouds, the column density measurements of molecular gas currently rely either on dust emission observation in the far-IR or on star counting. (Sub-)millimeter observations of numerous trace mol
We report observations of three rotational transitions of molecular oxygen (O2) in emission from the H2 Peak 1 position of vibrationally excited molecular hydrogen in Orion. We observed the 487 GHz, 774 GHz, and 1121 GHz lines using HIFI on the Hersc
We use the 2MASS Second Incremental Release Point Source Catalog to investigate the spatial distribution of young stars in the Perseus, Orion A, Orion B, and MonR2 molecular clouds. After subtracting a semi-empirical model of the field star contamina
Utilizing multi-wavelength dust emission maps acquired with $Herschel$, we reconstruct local volume density and dust temperature profiles for the prestellar cores B68 and L1689B using inverse-Abel transform based technique. We present intrinsic radia
The formation of stars is inextricably linked to the structure of their parental molecular clouds. Here we take a number of nearby giant molecular clouds (GMCs) and analyse their column density and mass distributions. This investigation is based on f