ﻻ يوجد ملخص باللغة العربية
A procedure to obtain single-electron wavefunctions within the tight-binding formalism is proposed. It is based on linear combinations of Slater-type orbitals whose screening coefficients are extracted from the optical matrix elements of the tight-binding Hamiltonian. Bloch functions obtained for zinc-blende semiconductors in the extended-basis spds* tight-binding model demonstrate very good agreement with first-principles wavefunctions. We apply this method to the calculation of electron-hole exchange interaction, and obtain the dispersion of excitonic fine structure of bulk GaAs. Beyond semiconductor nanostructures, this work is a fundamental step toward modeling many-body effects from post-processing single particle wavefunctions within the tight-binding theory.
A method for incorporating electromagnetic fields into empirical tight-binding theory is derived from the principle of local gauge symmetry. Gauge invariance is shown to be incompatible with empirical tight-binding theory unless a representation exis
For a previously published study of the titanium hcp (alpha) to omega (omega) transformation, a tight-binding model was developed for titanium that accurately reproduces the structural energies and electron eigenvalues from all-electron density-funct
The electronic structure is found to be understandable in terms of free-atom term values and universal interorbital coupling parameters, since self-consistent tight-binding calculations indicate that Coulomb shifts of the d-state energies are small.
An earlier analysis of manganese oxides in various charge states indicated that free-atom term values and universal coupling gave a reasonable account of the cohesion. This approach is here extended to LaxSr(1-x)MnO3 in a perovskite structure, and a
We extend a tight-binding total energy method to include f-electrons, and apply it to the study of the structural and elastic properties of a range of elements from Be to U. We find that the tight-binding parameters are as accurate and transferable f