ترغب بنشر مسار تعليمي؟ اضغط هنا

New Diluted Ferromagnetic Semiconductor isostructural to 122 type iron pnictide superconductor with TC up to 180 K

266   0   0.0 ( 0 )
 نشر من قبل Changqing Jin
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Diluted magnetic semiconductors (DMS) have received much attention due to its potential applications to spintronics devices. A prototypical system (Ga,Mn)As has been widely studied since 1990s. The simultaneous spin and charge doping via hetero-valence (Ga3+,Mn2+) substitution, however, resulted in severely limited solubility without availability of bulk specimens. Previously we synthesized a new diluted ferromagnetic semiconductor of bulk Li(Zn,Mn)As with Tc up to 50K, where isovalent (Zn,Mn) spin doping was separated from charge control via Li concentrations. Here we report the synthesis of a new diluted ferromagnetic semiconductor (Ba1-xKx)(Zn1-yMny)2As2, isostructural to iron 122 system, where holes are doped via (Ba2+, K1+), while spins via (Zn2+,Mn2+) substitutions. Bulk samples with x=0.1-0.3 and y=0.05-0.15 exhibit ferromagnetic order with TC up to 180K, comparable to that of record high Tc for Ga(MnAs), significantly enhanced than Li(Zn,Mn)As. Moreover the (Ba,K)(Zn,Mn)2As2 shares the same 122 crystal structure with semiconducting BaZn2As2, antiferromagnetic BaMn2As2, and superconducting (Ba,K)Fe2As2, which makes them promising to the development of multilayer functional devices.



قيم البحث

اقرأ أيضاً

403 - Z. Deng , X. C. Wang , Q.Q. Liu 2009
A new iron pnictide LiFeP superconductor was found. The compound crystallizes into a Cu2Sb structure containing an FeP layer showing superconductivity with maximum Tc of 6K. This is the first 111 type iron pnictide superconductor containing no arseni c. The new superconductor is featured with itinerant behavior at normal state that could helpful to understand the novel superconducting mechanism of iron pnictide compounds.
502 - Z. Deng , K. Zhao , B.Gu 2013
We report the discovery of a new diluted magnetic semiconductor, Li(Zn,Mn)P, in which charge and spin are introduced independently via lithium off-stoichiometry and the isovalent substitution of Mn2+ for Zn2+, respectively. Isostructural to (Ga,Mn)As , Li(Zn,Mn)P was found to be a p-type ferromagnetic semiconductor with excess Lithium providing charge doping. First principles calculations indicate that excess Li is favored to partially occupy the Zn site, leading to hole doping. Ferromagnetism is mediated in semiconducting samples of relative low mobile carriers with a small coercive force, indicating an easy spin flip.
Diluted ferromagnetic semiconductors (DMSs) that combine the properties of semiconductors with ferromagnetism have potential application in spin-sensitive electronics (spintronics) devices. The search for DMS materials exploded after the observation of ferromagnetic ordering in III-V (Ga,Mn)As films. Recently, a series of DMS compounds isostructural to iron-based superconductors have been reported. Among them, the highest Curie temperature $T_C$ of 230 K has been achieved in (Ba,K)(Zn,Mn)$_2$As$_2$. However, most DMSs, including (Ga,Mn)As, are p-type, i.e., the carriers that mediate ferromagnetism are holes. For practical applications, DMS with n-type carriers are also advantageous. Here we report the successful synthesis of a II-II-V diluted ferromagnetic semiconductor with n-type carriers, Ba(Zn,Co)$_2$As$_2$. Magnetization measurements show that the ferromagnetic transition occurs up to $T_{C} sim$ 45 K. Hall effect and Seebeck effect measurements jointly confirm that the dominant carriers are electrons. Through muon spin relaxation ($mu$SR), a volume sensitive magnetic probe, we have also confirmed that the ferromagnetism in Ba(Zn,Co)$_2$As$_2$ is intrinsic and the internal field is static.
We use muon spin relaxation (muSR) to investigate the magnetic properties of a bulk form diluted ferromagnetic semiconductor (DFS) Li1.15(Zn0.9Mn0.1)P with T_C ~ 22 K. MuSR results confirm the gradual development of ferromagnetic ordering below T_C w ith a nearly 100% magnetic ordered volume. Despite its low carrier density, the relation between static internal field and Curie temperature observed for Li(Zn,Mn)P is consistent with the trend found in (Ga,Mn)As and other bulk DFSs, indicating these systems share a common mechanism for the ferromagnetic exchange interaction. Li1+y(Zn1-xMnx)P has the advantage of decoupled carrier and spin doping, where Mn2+ substitution for Zn2+ introduces spins and Li+ off-stoichiometry provides carriers. This advantage enables us to investigate the influence of overdoped Li on the ferromagnetic ordered state. Overdoping Li suppresses both T_C and saturation moments for a certain amount of spins, which indicates that more carriers are detrimental to the ferromagnetic exchange interaction, and that a delicate balance between charge and spin densities is required to achieve highest T_C.
281 - K. Zhao , B.J. Chen , Z. Deng 2014
Here we report the successful synthesis of a spin- & charge-decoupled diluted magnetic semiconductor (Ca,Na)(Zn,Mn)2As2, crystallizing into the hexagonal CaAl2Si2 structure. The compound shows a ferromagnetic transition with a Curie temperature up to 33 K with 10% Na doping, which gives rise to carrier density of np~10^20 cm^-3. The new DMS is a soft magnetic material with HC<400 Oe. The anomalous Hall effect is observed below the ferromagnetic ordering temperature. With increasing Mn doping, ferromagnetic order is accompanied by an interaction between the local spin and mobile charge, giving rise to a minimum in resistivity at low temperatures and localizing the conduction electrons. The system provides an ideal platform for studying the interaction of the local spins and conduction electrons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا