ﻻ يوجد ملخص باللغة العربية
Diluted magnetic semiconductors (DMS) have received much attention due to its potential applications to spintronics devices. A prototypical system (Ga,Mn)As has been widely studied since 1990s. The simultaneous spin and charge doping via hetero-valence (Ga3+,Mn2+) substitution, however, resulted in severely limited solubility without availability of bulk specimens. Previously we synthesized a new diluted ferromagnetic semiconductor of bulk Li(Zn,Mn)As with Tc up to 50K, where isovalent (Zn,Mn) spin doping was separated from charge control via Li concentrations. Here we report the synthesis of a new diluted ferromagnetic semiconductor (Ba1-xKx)(Zn1-yMny)2As2, isostructural to iron 122 system, where holes are doped via (Ba2+, K1+), while spins via (Zn2+,Mn2+) substitutions. Bulk samples with x=0.1-0.3 and y=0.05-0.15 exhibit ferromagnetic order with TC up to 180K, comparable to that of record high Tc for Ga(MnAs), significantly enhanced than Li(Zn,Mn)As. Moreover the (Ba,K)(Zn,Mn)2As2 shares the same 122 crystal structure with semiconducting BaZn2As2, antiferromagnetic BaMn2As2, and superconducting (Ba,K)Fe2As2, which makes them promising to the development of multilayer functional devices.
A new iron pnictide LiFeP superconductor was found. The compound crystallizes into a Cu2Sb structure containing an FeP layer showing superconductivity with maximum Tc of 6K. This is the first 111 type iron pnictide superconductor containing no arseni
We report the discovery of a new diluted magnetic semiconductor, Li(Zn,Mn)P, in which charge and spin are introduced independently via lithium off-stoichiometry and the isovalent substitution of Mn2+ for Zn2+, respectively. Isostructural to (Ga,Mn)As
Diluted ferromagnetic semiconductors (DMSs) that combine the properties of semiconductors with ferromagnetism have potential application in spin-sensitive electronics (spintronics) devices. The search for DMS materials exploded after the observation
We use muon spin relaxation (muSR) to investigate the magnetic properties of a bulk form diluted ferromagnetic semiconductor (DFS) Li1.15(Zn0.9Mn0.1)P with T_C ~ 22 K. MuSR results confirm the gradual development of ferromagnetic ordering below T_C w
Here we report the successful synthesis of a spin- & charge-decoupled diluted magnetic semiconductor (Ca,Na)(Zn,Mn)2As2, crystallizing into the hexagonal CaAl2Si2 structure. The compound shows a ferromagnetic transition with a Curie temperature up to