ترغب بنشر مسار تعليمي؟ اضغط هنا

Application of machine learning algorithms to the study of noise artifacts in gravitational-wave data

257   0   0.0 ( 0 )
 نشر من قبل Ruslan Vaulin
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The sensitivity of searches for astrophysical transients in data from the LIGO is generally limited by the presence of transient, non-Gaussian noise artifacts, which occur at a high-enough rate such that accidental coincidence across multiple detectors is non-negligible. Furthermore, non-Gaussian noise artifacts typically dominate over the background contributed from stationary noise. These glitches can easily be confused for transient gravitational-wave signals, and their robust identification and removal will help any search for astrophysical gravitational-waves. We apply Machine Learning Algorithms (MLAs) to the problem, using data from auxiliary channels within the LIGO detectors that monitor degrees of freedom unaffected by astrophysical signals. The number of auxiliary-channel parameters describing these disturbances may also be extremely large; an area where MLAs are particularly well-suited. We demonstrate the feasibility and applicability of three very different MLAs: Artificial Neural Networks, Support Vector Machines, and Random Forests. These classifiers identify and remove a substantial fraction of the glitches present in two very different data sets: four weeks of LIGOs fourth science run and one week of LIGOs sixth science run. We observe that all three algorithms agree on which events are glitches to within 10% for the sixth science run data, and support this by showing that the different optimization criteria used by each classifier generate the same decision surface, based on a likelihood-ratio statistic. Furthermore, we find that all classifiers obtain similar limiting performance, suggesting that most of the useful information currently contained in the auxiliary channel parameters we extract is already being used.



قيم البحث

اقرأ أيضاً

We present an algorithm for the identification of transient noise artifacts (glitches) in cross-correlation searches for long O(10s) gravitational-wave transients. The algorithm utilizes the auto-power in each detector as a discriminator between well -behaved Gaussian noise (possibly including a gravitational-wave signal) and glitches. We test the algorithm with both Monte Carlo noise and time-shifted data from the LIGO S5 science run and find that it is effective at removing a significant fraction of glitches while keeping the vast majority (99.6%) of the data. Using an accretion disk instability signal model, we estimate that the algorithm is accidentally triggered at a rate of less than 10^-5% by realistic signals, and less than 3% even for exceptionally loud signals. We conclude that the algorithm is a safe and effective method for cleaning the cross-correlation data used in searches for long gravitational-wave transients.
With the advent of gravitational wave astronomy, techniques to extend the reach of gravitational wave detectors are desired. In addition to the stellar-mass black hole and neutron star mergers already detected, many more are below the surface of the noise, available for detection if the noise is reduced enough. Our method (DeepClean) applies machine learning algorithms to gravitational wave detector data and data from on-site sensors monitoring the instrument to reduce the noise in the time-series due to instrumental artifacts and environmental contamination. This framework is generic enough to subtract linear, non-linear, and non-stationary coupling mechanisms. It may also provide handles in learning about the mechanisms which are not currently understood to be limiting detector sensitivities. The robustness of the noise reduction technique in its ability to efficiently remove noise with no unintended effects on gravitational-wave signals is also addressed through software signal injection and parameter estimation of the recovered signal. It is shown that the optimal SNR ratio of the injected signal is enhanced by $sim 21.6%$ and the recovered parameters are consistent with the injected set. We present the performance of this algorithm on linear and non-linear noise sources and discuss its impact on astrophysical searches by gravitational wave detectors.
The LIGO observatories detect gravitational waves through monitoring changes in the detectors length down to below $10^{-19}$,$m/sqrt{Hz}$ variation---a small fraction of the size of the atoms that make up the detector. To achieve this sensitivity, t he detector and its environment need to be closely monitored. Beyond the gravitational wave data stream, LIGO continuously records hundreds of thousands of channels of environmental and instrumental data in order to monitor for possibly minuscule variations that contribute to the detector noise. A particularly challenging issue is the appearance in the gravitational wave signal of brief, loud noise artifacts called ``glitches, which are environmental or instrumental in origin but can mimic true gravitational waves and therefore hinder sensitivity. Currently they are primarily identified by analysis of the gravitational wave data stream. Here we present a machine learning approach that can identify glitches by monitoring textit{all} environmental and detector data channels, a task that has not previously been pursued due to its scale and the number of degrees of freedom within gravitational-wave detectors. The presented method is capable of reducing the gravitational-wave detector networks false alarm rate and improving the LIGO instruments, consequently enhancing detection confidence.
We present the data reduction software and the distribution of Level 1 and Level 2 products of the Stratospheric Terahertz Observatory 2 (STO2). STO2, a balloon-borne Terahertz telescope, surveyed star-forming regions and the Galactic plane and produ ced approximately 300,000 spectra. The data are largely similar to spectra typically produced by single-dish radio telescopes. However, a fraction of the data contained rapidly varying fringe/baseline features and drift noise, which could not be adequately corrected using conventional data reduction software. To process the entire science data of the STO2 mission, we have adopted a new method to find proper off-source spectra to reduce large-amplitude fringes and new algorithms including Asymmetric Least Square (ALS), Independent Component Analysis (ICA), and Density-based spatial clustering of applications with noise (DBSCAN). The STO2 data reduction software efficiently reduced the amplitude of fringes from a few hundred to 10 K and resulted in baselines of amplitude down to a few K. The Level 1 products typically have the noise of a few K in [CII] spectra and ~1 K in [NII] spectra. Using a regridding algorithm, we made spectral maps of star-forming regions and the Galactic plane survey using an algorithm employing a Bessel-Gaussian kernel. Level 1 and 2 products are available to the astronomical community through the STO2 data server and the DataVerse. The software is also accessible to the public through Github. The detailed addresses are given in Section 4 of the paper on data distribution.
Signal extraction out of background noise is a common challenge in high precision physics experiments, where the measurement output is often a continuous data stream. To improve the signal to noise ratio of the detection, witness sensors are often us ed to independently measure background noises and subtract them from the main signal. If the noise coupling is linear and stationary, optimal techniques already exist and are routinely implemented in many experiments. However, when the noise coupling is non-stationary, linear techniques often fail or are sub-optimal. Inspired by the properties of the background noise in gravitational wave detectors, this work develops a novel algorithm to efficiently characterize and remove non-stationary noise couplings, provided there exist witnesses of the noise source and of the modulation. In this work, the algorithm is described in its most general formulation, and its efficiency is demonstrated with examples from the data of the Advanced LIGO gravitational wave observatory, where we could obtain an improvement of the detector gravitational wave reach without introducing any bias on the source parameter estimation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا