ﻻ يوجد ملخص باللغة العربية
Eclipsing binary DI Herculis (DI Her) is known to exhibit anomalously slow apsidal precession, below the rate predicted by the general relativity. Recent measurements of the Rossiter-McLauglin effect indicate that stellar spins in DI Her are almost orthogonal to the orbital angular momentum, which explains the anomalous precession in agreement with the earlier theoretical suggestion by Shakura. However, these measurements yield only the projections of the spin-orbit angles onto the sky plane, leaving the spin projection onto our line of sight unconstrained. Here we describe a method of determining the full three-dimensional spin orientation of the binary components relying on the use of the gravity darkening effect, which is significant for the rapidly rotating stars in DI Her. Gravity darkening gives rise to nonuniform brightness distribution over the stellar surface, the pattern of which depends on the stellar spin orientation. Using archival photometric data obtained during multiple eclipses spread over several decades we are able to constrain the unknown spin angles in DI Her with this method, finding that spin axes of both stars lie close to the plane of the sky. Our procedure fully accounts for the precession of stellar spins over the long time span of observations.
The large spin-orbit misalignments in the DI Herculis stellar binary system have resolved the decades-long puzzle of the anomalously slow apsidal precession rate, but raise new questions regarding the origin of the obliquities. This paper investigate
We report extensive spectroscopic and differential V-band photometric observations of the 18.4-day detached double-lined eclipsing binary LV Her (F9V), which has the highest eccentricity (e = 0.613) among the systems with well-measured properties. We
BVR light curves and radial velocities for the double-lined eclipsing binary V1135,Her were obtained. The brighter component of V1135,Her is a Cepheid variable with a pulsation period of 4.22433$pm$0.00026 days. The orbital period of the system is ab
The observational appearance of black holes in X-ray binary systems depends on their masses, spins, accretion rate and the misalignment angle between the black hole spin and the orbital angular momentum. We used high-precision optical polarimetric ob
A third body in an eclipsing binary system causes regular periodic changes in the observed (O) minus the computed (C) eclipse epochs. Fourth bodies are rarely detected from the O-C data. We apply the new Discrete Chi-square method (DCM) to the O-C da