ترغب بنشر مسار تعليمي؟ اضغط هنا

Analysis of Spin-Orbit Misalignment in Eclipsing Binary DI Herculis

608   0   0.0 ( 0 )
 نشر من قبل Alexander Philippov
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Eclipsing binary DI Herculis (DI Her) is known to exhibit anomalously slow apsidal precession, below the rate predicted by the general relativity. Recent measurements of the Rossiter-McLauglin effect indicate that stellar spins in DI Her are almost orthogonal to the orbital angular momentum, which explains the anomalous precession in agreement with the earlier theoretical suggestion by Shakura. However, these measurements yield only the projections of the spin-orbit angles onto the sky plane, leaving the spin projection onto our line of sight unconstrained. Here we describe a method of determining the full three-dimensional spin orientation of the binary components relying on the use of the gravity darkening effect, which is significant for the rapidly rotating stars in DI Her. Gravity darkening gives rise to nonuniform brightness distribution over the stellar surface, the pattern of which depends on the stellar spin orientation. Using archival photometric data obtained during multiple eclipses spread over several decades we are able to constrain the unknown spin angles in DI Her with this method, finding that spin axes of both stars lie close to the plane of the sky. Our procedure fully accounts for the precession of stellar spins over the long time span of observations.



قيم البحث

اقرأ أيضاً

The large spin-orbit misalignments in the DI Herculis stellar binary system have resolved the decades-long puzzle of the anomalously slow apsidal precession rate, but raise new questions regarding the origin of the obliquities. This paper investigate s obliquity evolution in stellar binaries hosting modestly-inclined circumbinary disks. As the disk and binary axes undergo mutual precession, each oblate star experiences a torque from its companion star, so that the spin and orbital axes undergo mutual precession. As the disk loses mass through a combination of winds and accretion, the system may be captured into a high-obliquity Cassini state (a spin-orbit resonance). The final obliquity depends on the details of the disk dispersal. We construct a simple disk model to emulate disk dispersal due to viscous accretion and photoevaporation, and identify the necessary disk properties for producing the observed obliquities in DI Herculis. The disk must be massive (at least $10 %$ of the binary mass). If accretion onto the binary is suppressed, the observed high stellar obliquities are reproduced with a binary-disk inclination of $sim 5^circ - 10^circ$, but if substantial accretion occurs, the inclination must be larger, $sim 20^circ - 30^circ$. If moderate accretion occurs, initially the disk must lose its mass slowly, but eventually lose its remaining mass abruptly, analogous to the observed two-timescale behavior for disks around T-Tauri stars. The spin feedback on the binary orbit causes the binary-disk inclination to decay as the obliquity evolves, a feature that is absent from the standard Cassini state treatment.
We report extensive spectroscopic and differential V-band photometric observations of the 18.4-day detached double-lined eclipsing binary LV Her (F9V), which has the highest eccentricity (e = 0.613) among the systems with well-measured properties. We determine the absolute masses and radii of the components to be M1 = 1.193 +/- 0.010 M(Sun), M2 = 1.1698 +/- 0.0081 M(Sun), R1 = 1.358 +/- 0.012 R(Sun), and R2 = 1.313 +/- 0.011 R(Sun), with fractional errors of 0.9% or better. The effective temperatures are 6060 +/- 150 K and 6030 +/- 150 K, respectively, and the overall metallicity is estimated to be [m/H] = +0.08 +/- 0.21. A comparison with current stellar evolution models for this composition indicates an excellent fit for an age between 3.8 and 4.2 Gyr, with both stars being near the middle of their main-sequence lifetimes. Full integration of the equations for tidal evolution is consistent with the high eccentricity, and suggests the stars spin axes are aligned with the orbital axis, and that their rotations should be pseudo-synchronized. The latter prediction is not quite in agreement with the measured projected rotational velocities.
BVR light curves and radial velocities for the double-lined eclipsing binary V1135,Her were obtained. The brighter component of V1135,Her is a Cepheid variable with a pulsation period of 4.22433$pm$0.00026 days. The orbital period of the system is ab out 39.99782$pm$0.00233 days, which is the shortest value among the known Type,II Cepheid binaries. The observed B, V, and R magnitudes were cleaned for the intrinsic variations of the primary star. The remaining light curves, consisting of eclipses and proximity effects, are obtained. Our analyses of the multi-colour light curves and radial velocities led to the determination of fundamental stellar properties of both components of the interesting system V1135,Her. The system consists of two evolved stars, G1+K3 between giants and supergiants, with masses of M$_1$=1.461$pm$0.054 Msun ~and M$_2$=0.504$pm$0.040 {Msun} and radii of R$_1$=27.1$pm$0.4 {Rsun} and R$_2$=10.4$pm$0.2 {Rsun}. The pulsating star is almost filling its corresponding Roche lobe which indicates the possibility of mass loss or transfer having taken place. We find an average distance of d=7500$pm$450 pc using the BVR magnitudes and also the V-band extinction. Location in the Galaxy and the distance to the galactic plane with an amount of 1300 pc indicate that it probably belongs to the thick-disk population. Most of the observed and calculated parameters of the V1135,Her and its location on the color-magnitude and period-luminosity diagrams lead to a classification of an Anomalous Cepheid.
The observational appearance of black holes in X-ray binary systems depends on their masses, spins, accretion rate and the misalignment angle between the black hole spin and the orbital angular momentum. We used high-precision optical polarimetric ob servations to constrain the position angle of the orbital axis of the black hole X-ray binary MAXI J1820+070. Together with previously obtained orientation of the relativistic jet and the inclination of the orbit this allowed us to determine a lower limit of 40 degrees on the misalignment angle. Such a large misalignment challenges the models of quasi-periodic oscillations observed in black hole X-ray binaries, puts strong constraints on the black hole formation mechanisms, and has to be accounted for when measuring black hole masses and spins from the X-ray data.
88 - L. Jetsu 2020
A third body in an eclipsing binary system causes regular periodic changes in the observed (O) minus the computed (C) eclipse epochs. Fourth bodies are rarely detected from the O-C data. We apply the new Discrete Chi-square method (DCM) to the O-C da ta of the eclipsing binary XZ Andromedae. These data contain the periodic signatures of at least ten wide orbit stars (WOSs). Their orbital periods are between 1.6 and 91.7 years. since no changes have been observed in the eclipses of XZ And during the past 127 years, the orbits of all these WOSs are most probably co-planar. We give detailed instructions of how the professional and the amateur astronomers can easily repeat all stages of our DCM analysis with an ordinary PC, as well as apply this method to O-C data of other eclipsing binaries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا