ﻻ يوجد ملخص باللغة العربية
Van der Waals heterostructures comprise a new class of artificial materials formed by stacking atomically-thin planar crystals. Here, we demonstrate band structure engineering of a van der Waals heterostructure composed of a monolayer graphene flake coupled to a rotationally-aligned hexagonal boron nitride substrate. The spatially-varying interlayer atomic registry results both in a local breaking of the carbon sublattice symmetry and a long-range moire superlattice potential in the graphene. This interplay between short- and long-wavelength effects results in a band structure described by isolated superlattice minibands and an unexpectedly large band gap at charge neutrality, both of which can be tuned by varying the interlayer alignment. Magnetocapacitance measurements reveal previously unobserved fractional quantum Hall states reflecting the massive Dirac dispersion that results from broken sublattice symmetry. At ultra-high fields, integer conductance plateaus are observed at non-integer filling factors due to the emergence of the Hofstadter butterfly in a symmetry-broken Landau level.
Heavy fermion systems represent one of the paradigmatic strongly correlated states of matter. They have been used as a platform for investigating exotic behavior ranging from quantum criticality and non-Fermi liquid behavior to unconventional topolog
The designer approach has become a new paradigm in accessing novel quantum phases of matter. Moreover, the realization of exotic states such as topological insulators, superconductors and quantum spin liquids often poses challenging or even contradic
The fabrication of van der Waals heterostructures, artificial materials assembled by individually stacking atomically thin (2D) materials, is one of the most promising directions in 2D materials research. Until now, the most widespread approach to st
Two-dimensional (2D) materials are a new type of materials under intense study because of their interesting physical properties and wide range of potential applications from nanoelectronics to sensing and photonics. Monolayers of semiconducting trans
When two superconductors are connected across a ferromagnet, the spin configuration of the transferred Cooper pairs can be modulated due to magnetic exchange interaction. The resulting supercurrent can reverse its sign across the Josephson junction (