ﻻ يوجد ملخص باللغة العربية
Spectral characterization of Super-Earth atmospheres for planets orbiting in the Habitable Zone of M-dwarf stars is a key focus in exoplanet science. A central challenge is to understand and predict the expected spectral signals of atmospheric biosignatures (species associated with life). Our work applies a global-mean radiative-convective-photochemical column model assuming a planet with an Earth-like biomass and planetary development. We investigated planets with gravities of 1g and 3g and a surface pressure of one bar around central stars with spectral classes from M0 to M7. The spectral signals of the calculated planetary scenarios have been presented by Rauer et al. (2011). The main motivation of the present work is to perform a deeper analysis of the chemical processes in the planetary atmospheres. We apply a diagnostic tool, the Pathway Analysis Program, to shed light on the photochemical pathways that form and destroy biosignature species. Ozone is a potential biosignature for complex- life. An important result of our analysis is a shift in the ozone photochemistry from mainly Chapman production (which dominates in the terrestrial stratosphere) to smog-dominated ozone production for planets in the Habitable Zone of cooler (M5-M7)-class dwarf stars. This result is associated with a lower energy flux in the UVB wavelength range from the central star, hence slower planetary atmospheric photolysis of molecular oxygen, which slows the Chapman ozone production.
Atmospheric temperature and mixing ratio profiles of terrestrial planets vary with the spectral energy flux distribution for different types of M-dwarf stars and the planetary gravity. We investigate the resulting effects on the spectral appearance o
UV radiation can induce photochemical processes in exoplanet atmospheres and produce haze particles. Recent observations suggest that haze and/or cloud layers could be present in the upper atmospheres of exoplanets. Haze particles play an important r
We investigate atmospheric responses of modeled hypothetical Earth-like planets in the habitable zone of the M-dwarf AD Leonis to reduced oxygen (O2), removed biomass (dead Earth), varying carbon dioxide (CO2) and surface relative humidity (sRH). Res
We predict that cyanoacetylene (HC$_3$N) is produced photochemically in the atmosphere of GJ 1132 b in abundances detectable by the James Webb Space Telescope (JWST), assuming that the atmosphere is as described by Swain et al. (2021). First, we cons
Hot super-Earths likely possess minimal atmospheres established through vapor saturation equilibrium with the ground. We solve the hydrodynamics of these tenuous atmospheres at the surface of Corot-7b, Kepler 10b and 55 Cnc-e, including idealized tre