ترغب بنشر مسار تعليمي؟ اضغط هنا

ARGOS IV: The Kinematics of the Milky Way Bulge

234   0   0.0 ( 0 )
 نشر من قبل Melissa Ness
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the kinematic results from our ARGOS spectroscopic survey of the Galactic bulge of the Milky Way. Our aim is to understand the formation of the Galactic bulge. We examine the kinematics of about 17,400 stars in the bulge located within 3.5 kpc of the Galactic centre, identified from the 28,000 star ARGOS survey. We aim to determine if the formation of the bulge has been internally driven from disk instabilities as suggested by its boxy shape, or if mergers have played a significant role as expected from Lambda CDM simulations. From our velocity measurements across latitudes b = -5 deg, -7.5 deg and -10 deg we find the bulge to be a cylindrically rotating system that transitions smoothly out into the disk. Within the bulge, we find a kinematically distinct metal-poor population ([Fe/H] < -1.0) that is not rotating cylindrically. The 5% of our stars with [Fe/H] < -1.0 are a slowly rotating spheroidal population, which we believe are stars of the metal weak thick disk and halo which presently lie in the inner Galaxy. The kinematics of the two bulge components that we identified in ARGOS paper III (mean [Fe/H] = -0.25 and [Fe/H] = +0.15, respectively) demonstrate that they are likely to share a common formation origin and are distinct from the more metal poor populations of the thick disk and halo which are colocated inside the bulge. We do not exclude an underlying merger generated bulge component but our results favour bulge formation from instabilities in the early thin disk.



قيم البحث

اقرأ أيضاً

Until the recent advent of $Gaia$ Data Release 2 (DR2) and deep multi-object spectroscopy, it has been difficult to obtain 6-D phase space information for large numbers of stars beyond 4 kpc, in particular towards the Galactic centre, where dust and crowding effects are significant. In this study we combine line-of-sight velocities from the Abundances and Radial velocity Galactic Origins Survey (ARGOS) spectroscopic survey with proper motions from $Gaia$ DR2, to obtain a sample of $sim$ 7,000 red clump stars with 3-D velocities. We perform a large scale stellar kinematics study of the Milky Way (MW) bulge to characterize the bulge velocity ellipsoids. We measure the tilt $l_{v}$ of the major-axis of the velocity ellipsoid in the radial-longitudinal velocity plane in 20 fields across the bulge. The tilt or vertex deviation, is characteristic of non-axisymmetric systems and a significant tilt is a robust indicator of non-axisymmetry or bar presence. We compare the observations to the predicted kinematics of an N-body boxy-bulge model formed from dynamical instabilities. In the model, the $l_{v}$ values are strongly correlated with the angle ($alpha$) between the bulge major-axis and the Sun-Galactic centre line-of-sight. We use a maximum likelihood method to obtain an independent measurement of $alpha$, from bulge stellar kinematics alone. The most likely value of $alpha$ given our model is $alpha = (29 pm 3)^{circ}$. In the Baades window, the metal-rich stars display a larger vertex deviation ($l_{v} = -40^{circ}$) than the metal-poor stars ($l_{v} = 10^{circ}$) but we do not detect significant $l_{v}-$metallicity trends in the other fields.
We use N-body chemo-dynamic simulations to study the coupling between morphology, kinematics and metallicity of the bar/bulge region of our Galaxy. We make qualitative comparisons of our results with available observations and find very good agreemen t. We conclude that this region is complex, since it comprises several stellar components with different properties -- i.e. a boxy/peanut bulge, thin and thick disc components, and, to lesser extents, a disky pseudobulge, a stellar halo and a small classical bulge -- all cohabiting in dynamical equilibrium. Our models show strong links between kinematics and metallicity, or morphology and metallicity, as already suggested by a number of recent observations. We discuss and explain these links.
114 - C. Babusiaux , A. Gomez , V. Hill 2010
Two main scenarios for the formation of the Galactic bulge are invoked, the first one through gravitational collapse or hierarchical merging of subclumps, the second through secular evolution of the Galactic disc. We aim to constrain the formation of the Galactic bulge through studies of the correlation between kinematics and metallicities in Baades Window (l=1, b=-4) and two other fields along the bulge minor axis (l=0, b=-6 and b=-12). We combine the radial velocity and the [Fe/H] measurements obtained with FLAMES/GIRAFFE at the VLT with a spectral resolution of R=20000, plus for the Baades Window field the OGLE-II proper motions, and compare these with published N-body simulations of the Galactic bulge. We confirm the presence of two distinct populations in Baades Window found in Hill et al. 2010: the metal-rich population presents bar-like kinematics while the metal-poor population shows kinematics corresponding to an old spheroid or a thick disc one. In this context the metallicity gradient along the bulge minor axis observed by Zoccali et al. (2008), visible also in the kinematics, can be related to a varying mix of these two populations as one moves away from the Galactic plane, alleviating the apparent contradiction between the kinematic evidence of a bar and the existence of a metallicity gradient. We show evidences that the two main scenarios for the bulge formation co-exist within the Milky Way bulge.
88 - P. Di Matteo 2016
The Galactic bulge, that is the prominent out-of-plane over-density present in the inner few kiloparsecs of the Galaxy, is a complex structure, as the morphology, kinematics, chemistry and ages of its stars indicate. To understand the nature of its m ain components -- those at [Fe/H] >~ -1 dex -- it is necessary to make an inventory of the stellar populations of the Galactic disc(s), and of their borders : the chemistry of the disc at the solar vicinity, well known from detailed studies of stars over many years, is not representative of the whole disc. This finding, together with the recent revisions of the mass and sizes of the thin and thick discs, constitutes a major step in understanding the bulge complexity. N-body models of a boxy/peanut-shaped bulge formed from a thin disc through the intermediary of a bar have been successful in interpreting a number of global properties of the Galactic bulge, but they fail in reproducing the detailed chemo-kinematic relations satisfied by its components and their morphology. It is only by adding the thick disc to the picture that we can understand the nature of the Galactic bulge.
148 - M. Ness , K. Freeman 2015
The Galactic bulge of the Milky Way is made up of stars with a broad range of metallicity, -3.0 < [Fe/H] < 1 dex. The mean of the Metallicity Distribution Function (MDF) decreases as a function of height z from the plane and, more weakly, with galact ic radius. The most metal rich stars in the inner Galaxy are concentrated to the plane and the more metal poor stars are found predominantly further from the plane, with an overall vertical gradient in the mean of the MDF of about -0.45 dex/kpc. This vertical gradient is believed to reflect the changing contribution with height of different populations in the inner-most region of the Galaxy. The more metal rich stars of the bulge are part of the boxy/peanut structure and comprise stars in orbits which trace out the underlying X-shape. There is still a lack of consensus on the origin of the metal poor stars ([Fe/H] < -0.5) in the region of the bulge. Some studies attribute the more metal poor stars of the bulge to the thick disk and stellar halo that are present in the inner region, and other studies propose that the metal poor stars are a distinct old spheroid bulge population. Understanding the origin of the populations that make up the MDF of the bulge, and identifying if there is a unique bulge population which has formed separately from the disk and halo, has important consequences for identifying the relevant processes in the the formation and evolution of the Milky Way.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا