ﻻ يوجد ملخص باللغة العربية
Since its elaboration by Whitham, almost fifty years ago, modulation theory has been known to be closely related to the stability of periodic traveling waves. However, it is only recently that this relationship has been elucidated, and that fully nonlinear results have been obtained. These only concern dissipative systems though: reaction-diffusion systems were first considered by Doelman, Sandstede, Scheel, and Schneider [Mem. Amer. Math. Soc. 2009], and viscous systems of conservation laws have been addressed by Johnson, Noble, Rodrigues, and Zumbrun [preprint 2012]. Here, only nondissipative models are considered, and a most basic question is investigated, namely the expected link between the hyperbolicity of modulated equations and the spectral stability of periodic traveling waves to sideband perturbations. This is done first in an abstract Hamiltonian framework, which encompasses a number of dispersive models, in particular the well-known (generalized) Korteweg--de Vries equation, and the less known Euler--Korteweg system, in both Eulerian coordinates and Lagrangian coordinates. The latter is itself an abstract framework for several models arising in water waves theory, superfluidity, and quantum hydrodynamics. As regards its application to compressible capillary fluids, attention is paid here to untangle the interplay between traveling waves/modulation equations in Eulerian coordinates and those in Lagrangian coordinates. In the most general setting, it is proved that the hyperbolicity of modulated equations is indeed necessary for the spectral stability of periodic traveling waves. This extends earlier results by Serre [Comm. Partial Differential Equations 2005], Oh and Zumbrun [Arch. Ration. Mech. Anal. 2003], and Johnson, Zumbrun and Bronski [Phys. D 2010]. In addition, reduced necessary conditions are obtained in the small amplitude limit. Then numerical investigations are carried out for the modulated equations of the Euler--Korteweg system with two types of pressure laws, namely the quadratic law of shallow water equations, and the nonmonotone van der Waals pressure law. Both the evolutionarity and the hyperbolicity of the modulated equations are tested, and regions of modulational instability are thus exhibited.
Partial differential equations endowed with a Hamiltonian structure, like the Korteweg--de Vries equation and many other more or less classical models, are known to admit rich families of periodic travelling waves. The stability theory for these wave
Stability criteria have been derived and investigated in the last decades for many kinds of periodic traveling wave solutions to Hamiltonian PDEs. They turned out to depend in a crucial way on the negative signature of the Hessian matrix of action in
We study the phenomenon of revivals for the linear Schrodinger and Airy equations over a finite interval, by considering several types of non-periodic boundary conditions. In contrast with the case of the linear Schrodinger equation examined recently
M. Kruskal showed that each nearly-periodic dynamical system admits a formal $U(1)$ symmetry, generated by the so-called roto-rate. We prove that such systems also admit nearly-invariant manifolds of each order, near which rapid oscillations are supp
Complete Hamiltonian formalism is suggested for inertial waves in rotating incompressible fluid. Resonance three-wave interaction processes -- decay instability and confluence of two waves -- are shown to play a key role in the weakly nonlinear dynam