ترغب بنشر مسار تعليمي؟ اضغط هنا

A New Photometric Model of the Galactic Bar using Red Clump Giants

136   0   0.0 ( 0 )
 نشر من قبل Liang Cao
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a study of the luminosity density distribution of the Galactic bar using number counts of red clump giants (RCGs) from the OGLE-III survey. The data were recently published by Nataf et al. (2013) for 9019 fields towards the bulge and have $2.94times 10^6$ RC stars over a viewing area of $90.25 ,textrm{deg}^2$. The data include the number counts, mean distance modulus ($mu$), dispersion in $mu$ and full error matrix, from which we fit the data with several tri-axial parametric models. We use the Markov Chain Monte Carlo (MCMC) method to explore the parameter space and find that the best-fit model is the $E_3$ model, with the distance to the GC is 8.13 kpc, the ratio of semi-major and semi-minor bar axis scale lengths in the Galactic plane $x_{0},y_{0}$, and vertical bar scale length $z_0$, is $x_0:y_0:z_0 approx 1.00:0.43:0.40$ (close to being prolate). The scale length of the stellar density profile along the bars major axis is $sim$ 0.67 kpc and has an angle of $29.4^circ$, slightly larger than the value obtained from a similar study based on OGLE-II data. The number of estimated RC stars within the field of view is $2.78 times 10^6$, which is systematically lower than the observed value. We subtract the smooth parametric model from the observed counts and find that the residuals are consistent with the presence of an X-shaped structure in the Galactic centre, the excess to the estimated mass content is $sim 5.8%$. We estimate the total mass of the bar is $sim 1.8 times 10^{10} M_odot$. Our results can be used as a key ingredient to construct new density models of the Milky Way and will have implications on the predictions of the optical depth to gravitational microlensing and the patterns of hydrodynamical gas flow in the Milky Way.



قيم البحث

اقرأ أيضاً

Red clump giant stars can be used as distance indicators to trace the mass distribution of the Galactic bar. We use RCG stars from 44 bulge fields from the OGLE-II microlensing collaboration database to constrain analytic tri-axial models for the Gal actic bar. We find the bar major axis is oriented at an angle of 24 - 27 degrees to the Sun-Galactic centre line-of-sight. The ratio of semi-major and semi-minor bar axis scale lengths in the Galactic plane x_0, y_0, and vertical bar scale length z_0, is x_0 : y_0 : z_0 = 10 : 3.5 : 2.6, suggesting a slightly more prolate bar structure than the working model of Gerhard (2002) which gives the scale length ratios as x_0 : y_0 : z_0 = 10 : 4 : 3 .
If the Galaxy is axisymmetric and in dynamical equilibrium, we expect negligible fluctuations in the residual line-of-sight velocity field. Recent results using the apg{} survey find significant fluctuations in velocity for stars in the midplane ($|z |<$0.25 kpc) out to 5 kpc, suggesting that the dynamical influence of non-axisymmetric features i.e., the Milky Ways bar, spiral arms and merger events extends out to the Solar neighborhood. Their measured power spectrum has a characteristic amplitude of 11 kms{} on a scale of 2.5 kpc. The existence of such large-scale streaming motions has important implications for determining the Suns motion about the Galactic Centre. Using Red Clump stars from glh{} and apg{}, we map the line-of-sight velocities around the Sun (d$<$5 kpc), and $|z|<$1.25 kpc from the midplane. By subtracting a smooth axisymmetric model for the velocity field, we study the residual fluctuations and compare our findings with mock survey generated by glx{}. We find negligible large-scale fluctuations away from the plane. In the mid-plane, we reproduce the earlier apg{} power spectrum but with 20% smaller amplitude (9.3 kms{}) after taking into account a few systematics (e.g., volume completeness). Using a flexible axisymmetric model the power-amplitude is further reduced to 6.3 kms{}. Additionally, our simulations show that, in the plane, distances are underestimated for high-mass Red Clump stars which can lead to spurious power-amplitude of about 5.2 kms{}. Taking this into account, we estimate the amplitude of real fluctuations to be $<$4.6 kms{}, about a factor of three less than the apg{} result.
Asteroseismology can provide joint constraints on masses and radii of individual stars. While this approach has been extensively tested for red giant branch (RGB) stars, it has been more difficult to test for helium core-burning red-clump (RC) giants because of the lack of fundamental calibrators. To provide independent mass estimates, we utilize a number of widely used horizontal-branch (HB) models in the literature, and derive photometric masses from a comparison with $griBVI_CJHK_s$ photometry. Our selected models disagree with each other on the predicted mass-luminosity-temperature relation. We adopt first-order corrections on colors and magnitudes to minimize the dispersion between different models by forcing models to match the observed location in the solar-metallicity cluster M67. Even for these calibrated models, however, the internal consistency between models deteriorates at higher metallicities, and photometric masses become smaller than asteroseismic masses, as seen from metal-rich field RC stars with Gaia parallaxes. Similarly, the average photometric mass for metal-rich NGC 6791 stars ranges from $0.7 M_odot$ to $1.1 M_odot$, depending on the specific set of models employed. An ensemble average of the photometric masses ($0.88pm0.16 M_odot$) in NGC 6791 is marginally consistent with the asteroseismic mass ($1.16pm0.04 M_odot$). There is a clear tension between the masses that one would predict from photometry for metal-rich field RC stars, asteroseismic masses, and those that would be expected from the ages of stars in the Galactic disk populations and canonical RGB mass loss. We conclude that standard RC models need to be re-examined in light of these powerful new data sets.
Red clump giants in the Galactic bulge are approximate standard candles and hence they can be used as distance indicators. We compute the proper motion dispersions of RCG stars in the Galactic bulge using the proper motion catalogue from the second p hase of the Optical Gravitational Microlensing Experiment (OGLE-II, Sumi et al. 2004) for 45 fields. The proper motion dispersions are measured to a few per cent accuracy due to the large number of stars in the fields. The observational sample is comprised of 577736 stars. These observed data are compared to a state-of-the-art particle simulation of the Galactic bulge region. The predictions are in rough agreement with observations, but appear to be too anisotropic in the velocity ellipsoid. We note that there is significant field-to-field variation in the observed proper motion dispersions. This could either be a real feature, or due to some unknown systematic effect.
291 - S. S. Shan , H. Zhu , W. W. Tian 2018
We carry out a project to independently measure the distances of supernova remnants (SNRs) in the first quadrant of the Galaxy. In this project, red clump (RC) stars are used as standard candles and extinction probes to build the optical extinction ( A$_V$) - distance(D) relation in each direction of extinction-known SNRs. 15 SNRs distances are well determined. Among them, the distances of G65.8-0.5, G66.0-0.0 and G67.6+0.9 are given for the first time. We also obtain 32 upper/lower limits of distances, and the distances to G5.7-0.1, G15.1-1.6, G28.8+1.5 and G78.2+2.1 are constrained. Most of the distances measured by the RC method are consistent with previous results. The RC method provides an independent access to the distances of SNRs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا