Optical control of individual carbon nanotube light emitters by spectral double resonance in silicon microdisk resonators


الملخص بالإنكليزية

Single-walled carbon nanotubes have advantages as a nanoscale light source compatible with silicon photonics because they show room-temperature luminescence at telecom-wavelengths and can be directly synthesized on silicon substrates. Here we demonstrate integration of individual light-emitting carbon nanotubes with silicon microdisk resonators. Photons emitted from nanotubes are efficiently coupled to whispering gallery modes, circulating within the disks and lighting up their perimeters. Furthermore, we control such emission by tuning the excitation wavelength in and out of resonance with higher order modes in the same disk. Our results open up the possibilities of using nanotube emitters embedded in photonic circuits that are individually addressable through spectral double resonance.

تحميل البحث