ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-monotonic Negation in Probabilistic Deductive Databases

126   0   0.0 ( 0 )
 نشر من قبل Raymond T. Ng
 تاريخ النشر 2013
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we study the uses and the semantics of non-monotonic negation in probabilistic deductive data bases. Based on the stable semantics for classical logic programming, we introduce the notion of stable formula, functions. We show that stable formula, functions are minimal fixpoints of operators associated with probabilistic deductive databases with negation. Furthermore, since a. probabilistic deductive database may not necessarily have a stable formula function, we provide a stable class semantics for such databases. Finally, we demonstrate that the proposed semantics can handle default reasoning naturally in the context of probabilistic deduction.



قيم البحث

اقرأ أيضاً

132 - Thomas Beyhl 2016
Nowadays, graph databases are employed when relationships between entities are in the scope of database queries to avoid performance-critical join operations of relational databases. Graph queries are used to query and modify graphs stored in graph d atabases. Graph queries employ graph pattern matching that is NP-complete for subgraph isomorphism. Graph database views can be employed that keep ready answers in terms of precalculated graph pattern matches for often stated and complex graph queries to increase query performance. However, such graph database views must be kept consistent with the graphs stored in the graph database. In this paper, we describe how to use incremental graph pattern matching as technique for maintaining graph database views. We present an incremental maintenance algorithm for graph database views, which works for imperatively and declaratively specified graph queries. The evaluation shows that our maintenance algorithm scales when the number of nodes and edges stored in the graph database increases. Furthermore, our evaluation shows that our approach can outperform existing approaches for the incremental maintenance of graph query results.
Databases can leak confidential information when users combine query results with probabilistic data dependencies and prior knowledge. Current research offers mechanisms that either handle a limited class of dependencies or lack tractable enforcement algorithms. We propose a foundation for Database Inference Control based on ProbLog, a probabilistic logic programming language. We leverage this foundation to develop Angerona, a provably secure enforcement mechanism that prevents information leakage in the presence of probabilistic dependencies. We then provide a tractable inference algorithm for a practically relevant fragment of ProbLog. We empirically evaluate Angeronas performance showing that it scales to relevant security-critical problems.
98 - Quanlin Chen 2021
Multi-agent value-based approaches recently make great progress, especially value decomposition methods. However, there are still a lot of limitations in value function factorization. In VDN, the joint action-value function is the sum of per-agent ac tion-value function while the joint action-value function of QMIX is the monotonic mixing of per-agent action-value function. To some extent, QTRAN reduces the limitation of joint action-value functions that can be represented, but it has unsatisfied performance in complex tasks. In this paper, in order to extend the class of joint value functions that can be represented, we propose a novel actor-critic method called NQMIX. NQMIX introduces an off-policy policy gradient on QMIX and modify its network architecture, which can remove the monotonicity constraint of QMIX and implement a non-monotonic value function factorization for the joint action-value function. In addition, NQMIX takes the state-value as the learning target, which overcomes the problem in QMIX that the learning target is overestimated. Furthermore, NQMIX can be extended to continuous action space settings by introducing deterministic policy gradient on itself. Finally, we evaluate our actor-critic methods on SMAC domain, and show that it has a stronger performance than COMA and QMIX on complex maps with heterogeneous agent types. In addition, our ablation results show that our modification of mixer is effective.
288 - Qinyuan Wu , Yong Deng 2021
Categorization is a significant task in decision-making, which is a key part of human behavior. An interference effect is caused by categorization in some cases, which breaks the total probability principle. A negation quantum model (NQ model) is dev eloped in this article to predict the interference. Taking the advantage of negation to bring more information in the distribution from a different perspective, the proposed model is a combination of the negation of a probability distribution and the quantum decision model. Information of the phase contained in quantum probability and the special calculation method to it can easily represented the interference effect. The results of the proposed NQ model is closely to the real experiment data and has less error than the existed models.
Synthesizing user-intended programs from a small number of input-output examples is a challenging problem with several important applications like spreadsheet manipulation, data wrangling and code refactoring. Existing synthesis systems either comple tely rely on deductive logic techniques that are extensively hand-engineered or on purely statistical models that need massive amounts of data, and in general fail to provide real-time synthesis on challenging benchmarks. In this work, we propose Neural Guided Deductive Search (NGDS), a hybrid synthesis technique that combines the best of both symbolic logic techniques and statistical models. Thus, it produces programs that satisfy the provided specifications by construction and generalize well on unseen examples, similar to data-driven systems. Our technique effectively utilizes the deductive search framework to reduce the learning problem of the neural component to a simple supervised learning setup. Further, this allows us to both train on sparingly available real-world data and still leverage powerful recurrent neural network encoders. We demonstrate the effectiveness of our method by evaluating on real-world customer scenarios by synthesizing accurate programs with up to 12x speed-up compared to state-of-the-art systems.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا