ترغب بنشر مسار تعليمي؟ اضغط هنا

Finite-width effects in unstable-particle production at hadron colliders

94   0   0.0 ( 0 )
 نشر من قبل Andrew Papanastasiou
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a general formalism for the calculation of finite-width contributions to the differential production cross sections of unstable particles at hadron colliders. In this formalism, which employs an effective-theory description of unstable-particle production and decay, the matrix element computation is organized as a gauge-invariant expansion in powers of $Gamma_X/m_X$, with $Gamma_X$ and $m_X$ the width and mass of the unstable particle. This framework allows for a systematic inclusion of off-shell and non-factorizable effects whilst at the same time keeping the computational effort minimal compared to a full calculation in the complex-mass scheme. As a proof-of-concept example, we give results for an NLO calculation of top-antitop production in the $q bar{q}$ partonic channel. As already found in a similar calculation of single-top production, the finite-width effects are small for the total cross section, as expected from the na ive counting $sim Gamma_t/m_t sim 1%$. However, they can be sizeable, in excess of 10%, close to edges of certain kinematical distributions. The dependence of the results on the mass renormalization scheme, and its implication for a precise extraction of the top-quark mass, is also discussed.



قيم البحث

اقرأ أيضاً

We present a method to compute off-shell effects for processes involving resonant particles at hadron colliders with the possibility to include realistic cuts on the decay products. The method is based on an effective theory approach to unstable part icle production and, as an example, is applied to t-channel single top production at the LHC.
138 - Michael Rauch 2008
The search for Higgs bosons and extensions of the Standard Model of Elementary Particle Physics are main tasks of the Large Hadron Collider (LHC) at CERN which will start operation mid-2008. In this thesis processes which can be used to detect supers ymmetric Higgs bosons at the LHC were considered. First a computer program was written which completes the toolbox for automatic calculations of hadronic cross sections. Using this program, the supersymmetric QCD corrections to associated H-W+-production and h0-production via vector-boson fusion and in association with heavy quarks were calculated. The corrections partly give significant contributions to the total cross section. Additionally, the possibility to measure the quartic Higgs self-coupling via triple-Higgs production was investigated and found to be challenging.
73 - B. Dion , T. Gregoire , D. London 1998
We examine, as model-independently as possible, the production of bileptons at hadron colliders. When a particular model is necessary or useful, we choose the 3-3-1 model. We consider a variety of processes: q anti-q -> Y^{++} Y^{--}, u anti-d -> Y^{ ++} Y^{-}, anti-u d -> Y^+ Y^{--}, q anti-q -> Y^{++} e^{-} e^{-}, q anti-q -> phi^{++} phi^{--}, u anti-d -> -> phi^{++} phi^{-}, and anti-u d -> phi^{+} phi^{--}, where Y and phi are vector and scalar bileptons, respectively. Given the present low-energy constraints, we find that at the Tevatron, vector bileptons are unobservable, while light scalar bileptons (M_phi <= 300 GeV) are just barely observable. At the LHC, the reach is extended considerably: vector bileptons of mass M_Y <= 1 TeV are observable, as are scalar bileptons of mass M_phi <= 850 GeV.
159 - William B. Kilgore 2002
I report on a calculation of the inclusive Higgs boson production cross section at hadron colliders at next-to-next-to-leading order in QCD. The result is computed as an expansion about the threshold region. By continuing the expansion to very high o rder, we map the result onto basis functions and obtain the result in closed analytic form.
We present next-to-next-to-leading-order (NNLO) QCD corrections to the production of three isolated photons in hadronic collisions at the fully differential level. We employ qT subtraction within MATRIX and an efficient implementation of analytic two -loop amplitudes in the leading-colour approximation to achieve the first on-the-fly calculation for this process at NNLO accuracy. Numerical results are presented for proton-proton collisions at energies ranging from 7 TeV to 100 TeV. We find full agreement with the 8 TeV results of arXiv:1911.00479 and confirm that NNLO corrections are indispensable to describe ATLAS 8 TeV data. In addition, we demonstrate the significance of NNLO corrections for future precision studies of triphoton production at higher collision energies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا