ترغب بنشر مسار تعليمي؟ اضغط هنا

Imaging Cooper Pairing of Heavy Fermions in CeCoIn5

149   0   0.0 ( 0 )
 نشر من قبل Freek Massee
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Cooper pairing mechanism of heavy-fermion superconductors, while long hypothesized as due to spin fluctuations, has not been determined. It is the momentum space (k-space) structure of the superconducting energy gap delta(k) that encodes specifics of this pairing mechanism. However, because the energy scales are so low, it has not been possible to directly measure delta(k) for any heavy-fermion superconductor. Bogoliubov quasiparticle interference (QPI) imaging, a proven technique for measuring the energy gaps of high-Tc superconductors, has recently been proposed as a new method to measure delta(k) in heavy-fermion superconductors, specifically CeCoIn5. By implementing this method, we immediately detect a superconducting energy gap whose nodes are oriented along k||(+-1, +-1)pi/a0 directions. Moreover, we determine the complete k-space structure of the delta(k) of a heavy-fermion superconductor. For CeCoIn5, this novel information includes: the complex band structure and Fermi surface of the hybridized heavy bands, the fact that highest magnitude delta(k) opens on a high-k band so that gap nodes occur at quite unanticipated k-space locations, and that the Bogoliubov quasiparticle interference patterns are most consistent with dx2-y2 gap symmetry. The availability of such quantitative heavy band- and gap-structure data will be critical in identifying the microscopic mechanism of heavy fermion superconductivity in this material, and perhaps in general.



قيم البحث

اقرأ أيضاً

To identify the microscopic mechanism of heavy-fermion Cooper pairing is an unresolved challenge in quantum matter studies; it may also relate closely to finding the pairing mechanism of high temperature superconductivity. Magnetically mediated Coope r pairing has long been the conjectured basis of heavy-fermion superconductivity but no direct verification of this hypothesis was achievable. Here, we use a novel approach based on precision measurements of the heavy-fermion band structure using quasiparticle interference (QPI) imaging, to reveal quantitatively the momentum-space (k-space) structure of the f-electron magnetic interactions of CeCoIn5. Then, by solving the superconducting gap equations on the two heavy-fermion bands $E_k^{alpha,beta}$ with these magnetic interactions as mediators of the Cooper pairing, we derive a series of quantitative predictions about the superconductive state. The agreement found between these diverse predictions and the measured characteristics of superconducting CeCoIn5, then provides direct evidence that the heavy-fermion Cooper pairing is indeed mediated by the f-electron magnetism.
177 - Z. Sun , J. Beaumariage , Q.Wan 2020
We report experimental evidence for charged boson states in a solid without Cooper pairing, based on attaching two free carriers to an exciton in a semiconducting system. Theoretical calculations show that this type of complex is stable in bilayer sy stems next to a parallel metal layer. Our experimental measurements on structures made using two different materials show a new spectral line at the predicted energy, if and only if all the required conditions for this complex are fulfilled, including a parallel metal layer that significantly screens the repulsive interaction between the like-charge carriers, and with the predicted dependence on the distance to the metal layer. This suggests a new path for pursuing room temperature superconductivity without Cooper pairing.
121 - M. Fortes 2008
When both two-electron textit{and} two-hole Cooper-pairing are treated on an equal footing in the ladder approximation to the Bethe-Salpeter (BS) equation, the zero-total-momentum Cooper-pair energy is found to have two textit{real} solutions $mathca l{E}_{0}^{BS}=pm 2hbar omega_{{D}%}/sqrt{{e}^{2/lambda }+{1}}$ which coincide with the zero-temperature BCS energy gap $Delta =hbar omega_{D}/sinh (1/lambda) $ in the weak coupling limit. Here, $hbar omega_{D}$ is the Debye energy and $lambda geq 0$ the BCS model interaction coupling parameter. The interpretation of the BCS energy gap as the binding energy of a Cooper-pair is often claimed in the literature but, to our knowledge, never substantiated even in weak-coupling as we find here. In addition, we confirm the two purely-textit{imaginary} solutions assumed since at least the late 1950s as the textit{only} solutions, namely, $mathcal{E}_{0}^{BS}=pm i2hbar omega_{{D}}/sqrt{{e}^{2/lambda}{-1}}.$
Topological pairing of composite fermions has led to remarkable ideas, such as excitations obeying non-Abelian braid statistics and topological quantum computation. We construct a $p$-wave paired Bardeen-Cooper-Schrieffer (BCS) wave function for comp osite fermions in the torus geometry, which is a convenient geometry for formulating momentum space pairing as well as for revealing the underlying composite-fermion Fermi sea. Following the standard BCS approach, we minimize the Coulomb interaction energy at half filling in the lowest and the second Landau levels, which correspond to filling factors $ u=1/2$ and $ u=5/2$ in GaAs quantum wells, by optimizing two variational parameters that are analogous to the gap and the Debye cut-off energy of the BCS theory. Our results show no evidence for pairing at $ u=1/2$ but a clear evidence for pairing at $ u=5/2$. To a good approximation, the highest overlap between the exact Coulomb ground state at $ u=5/2$ and the BCS state is obtained for parameters that minimize the energy of the latter, thereby providing support for the physics of composite-fermion pairing as the mechanism for the $5/2$ fractional quantum Hall effect. We discuss the issue of modular covariance of the composite-fermion BCS wave function, and calculate its Hall viscosity and pair correlation function. By similar methods, we look for but do not find an instability to $s$-wave pairing for a spin-singlet composite-fermion Fermi sea at half-filled lowest Landau level in a system where the Zeeman splitting has been set to zero.
We investigate the low temperature (T $<$ 2 K) electronic structure of the heavy fermion superconductor CeCoIn5 (T$_c$ = 2.3 K) by angle-resolved photoemission spectroscopy (ARPES). The hybridization between conduction electrons and f-electrons, whic h ultimately leads to the emergence of heavy quasiparticles responsible for the various unusual properties of such materials, is directly monitored and shown to be strongly band dependent. In particular the most two-dimensional band is found to be the least hybridized one. A simplified multiband version of the Periodic Anderson Model (PAM) is used to describe the data, resulting in semi-quantitative agreement with previous bulk sensitive results from de-Haas-van-Alphen measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا